

Software Project 2

Summer semester 2020

MoDoCoT

“Moodle Dockerized Code
Testing

 Table Of Contents

1. Introduction to MoDoCoT system
a. Goals
b. Architectural Overview
c. Usage

2. Reasons for used applications

a. Docker
b. Jenkins
c. Spring Boot

3. Installation Guide

a. MoDoCoT Moodle Plugin
b. MoDoCoT Backend Web Service
c. License

4. Technical Details

a. Frontend
b. Backend
c. Deployment

5. Demo

 Introduction to MoDoCoT

MoDoCoT enables a professor to set up moodle assignments for students, where
the students can upload a ZIP file including the URL to their Git repository.
MoDoCoT builds the code and runs a predefined JUnit test Launcher suite over the
code. The professor provides the JUnit tests as well as a single ZIP file when
creating the assignment in Moodle. MoDoCoT shows the JUnit test results to the
respective student and the professor similar to other test results in Moodle.

MoDoCoT verifies the type of the uploaded file. Only ZIP files can be uploaded to
MoDoCoT. It display the test results of the uploaded Java task files, that means
what tests have passed or failed and if there was any compilation error. The
MoDoCoT Moodle plugin depends on the MoDoCoT web service.

Goals

The system MoDoCoT enables a professor to set up Moodle exercise hand-ins for
students in the HFT Stuttgarts official Moodle system, where MoDoCoT builds the
code and runs a Junit test suite over the code. MoDoCoT shows the weighted JUnit
test results to the respective student similar to other test results in Moodle.

Architectural Overview

The MoDoCoT system consists of two main parts:
- The MoDoCoT Moodle plugin
- The MoDoCoT web service

The Moodle plugin is of the type assignment submission and connects to the
web service using REST and the JSON file format.

Use Cases

● A teacher should be able to upload JUnit test files when creating an
assignment

● A student should be able to upload Java files to this assignment. Those files
should be tested with the provided JUnit tests.

● The student should see a summary of the test results.
● The teacher should see a summary of all test results of all students, but also

be able to view the detailed results.

 3

Reasons for used applications:

Docker

● Easy​ multi-server maintainability due to just executing the image on the
server.

● Keeping​ track of the container version, thus providing version control of the
containers.

● Lightweight​ since the containers are operating on the process level, making it
perfect for software delivery.

● Very​ low memory usage, since it only requires an operating system,
supporting libraries, and system resources to run a specific program.

● Reliable,​ since it runs the tests on the same image as the production
environment.

Jenkins

● Open-source
● Very well documented and has a wide range of useful plugins.
● Allows​ for running builds for multiple branches dynamically.
● Ability​ to send email notifications.

Spring Boot

● For all Spring applications, you should start with the Spring Intializr
● The Initialzr offers a fast way to pull in all the dependencies you need for an

application
● The Spring Boot Maven Plugin provides Spring Boot support in Apache

Maven
● It allows you to package executable jar or war archives run Spring Boot

applications, generate build information and start your Spring Boot application
prior to running integration tests.

● All​ Maven projects have a common structure, which makes it easier to
understand each project.

● It is declarative. All you have to do was create a .xml file and put your source
in the default directory. Maven takes care of the rest.

● It has a lifecycle, which is invoked when you execute ​​mvn install​.​ This
command tells Maven to execute a sequence of steps until it reaches the
lifecycle goal.

 4

Installation Guide

MoDoCoT Moodle Plugin

Moodle Dockerized Code Testing (MoDoCoT) Plugin

A Moodle plugin to assist teachers correcting JUnit exercises. This plugin allows
students to submit their Java exercises, let them be tested against a set of JUnit
tests (that have been priorly provided by the teacher) and receive immediate
feedback on the test results.
For this to work, the plugin communicates with an external webservice providing
essentially the following services on the given paths:

● POST ​/v1/unittest​: Expects the assignment id and a zip file containing a
repo.txt with the repository-link and an optional line for credentials when using
a private repository.
You need to add the credentials like this: username:passwort or
username:auth-token.

● POST ​/v1/tasks​: Expects the assignment id and a zip file containing a
repo.txt with the repository-link and an optional line for credentials when using
a private repository.
You need to add the credentials like this: username:passwort or
username:auth-token.
Returns the results as JSON.

● DELETE ​/v1/unittest?assignmentId={id}​: Triggers the deletion of the test
files.

MoDoCoT Backend Web Service

See here for an implementation of the webservice:
https://transfer.hft-stuttgart.de/gitlab/HFTSoftwareProject/MoDoCoT-Backend
There is also a ready to go docker container available:
https://hub.docker.com/r/hftstuttgart/modocot-backend

 5

https://hub.docker.com/r/hftstuttgart/modocot-backend

License

GNU General Public License, Version 3, is a free and copyleft license for software. The
GNU makes sure it remains free software for all its users, when speaking of free
software, it is referred to freedom, not price. General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software, that you
receive source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs, but it is not allowed to relicense the changed source
code.If you develop a new program, and you want it to be of the greatest possible use
to the public,
develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively state the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program's name and a brief idea of
what it does.> Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as

published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public

License for more details.

Developers that use the GNU GPL protect your rights with two steps:

1. assert copyright on the software
2. offer you this License giving you legal permission to copy, distribute it.

 For more information on this please go to the following link:
https://www.gnu.org/licenses/gpl-3.0.html
You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt to propagate or modify it is not acceptable, and will
automatically terminate your rights under this License.

 6

https://www.gnu.org/licenses/gpl-3.0.html

Technical Details

● The backend is a RESTful web service that allows you to upload the test files
and the task files as HTTP POST parameters.

● The data format for this communication is JSON, i.e when you upload the
task ZIP, the Java files will be checked against the previously uploaded tests
and the result will be returned as a JSON string.

● The default timeout set in moodle for the requests to our backend is set at
30sec.

● The backend is based on Spring Boot and uses the JavaCompiler API to
compile the tests and tasks.

● The backend uses Maven as a build and dependency management tool.
● For continuous deployment Jenkins 2.0 is used.
● For the virtualization technology we chose to use Docker.
● The continuous deployment environment runs on a KVM machine. It uses

Jenkins’ Maven plugin, bash scripts and the docker CLI to deploy the new
code to the productive environment.

● Jenkins builds the Docker container and pushes it to Docker Hub. On the
docker server the newly build container is pulled from Docker Hub.

Here's an example JSON response after uploading the task Java file:

 7

{
"testResults": [

{
"testName": "CalculatorTest",
"testCount": 5,
"failureCount": 0,
"successfulTests": [
"div",
"mult",
"sub",
"add",
"sum"
],
"testFailures": []
},
{
"testName": "CalculatorSecondTest",
"testCount": 5,
"failureCount": 1,
"successfulTests": [
"add2",
"sub2",
"div2",
"sum2"
] "testFailures": [
{
"testHeader": "mult2(CalculatorSecondTest)",
"message": "expected:<15.0> but was:<10.0>",

}
"compilationErrors": [

{
"code": "compiler.err.expected",
"columnNumber": 0,
"kind": "ERROR",
"lineNumber": 0,
"message": "';' expected",
"position": 46,
"filePath": "/tmp/TaskNotCompilable.java",
"startPosition": 46,
"endPosition": 46
}

] }

 8

The above shows the result of two JUnit test files (CalculatorTest and
CalculatorSecondTest). The field “testCount” indicates the number of test methods
within the test file. The field “failureCount” indicates how many tests have failed and
the field “successfulTests” indicates the method names of passed tests. In case a
test failed, the necessary information can be found as an entry in the "testFailures"
array.

If there was an compilation error the relevant information is part of the
"compilationErrors" array as shown below.

Interface description

The web service offers three REST endpoints:
POST /v1/unittest
Used for uploading and creating of assignments. The body needs to contain two
fields as form data:
assignmentId​: The ID of the created assignment. This is created by moodle.
repositoryTestFile​: The ZIP file containing the repository .txt file this assignment.
DELETE /v1/unittest?assignmentId=<111>
Delete the created assignment. The assignment ID of the unit tests which need to be
deleted is passed as a query parameter.
POST /v1/task
The upload of the Java files to be tested. The body needs to contain two form fields:
repositoryFile​: The ZIP file containing the repository as .txt file.
assignmentId​: The id of the assignment. Provided by moodle

Frontend

Moodle originally has been an acronym for Modular Object-Oriented Dynamic
Learning Environment. The modularity of Moodle is achieved by having a
sophisticated plugin environment, providing vast amounts of existing plugins to
choose from – or in case of developing your own plugin – several plugin types to
build upon.

This section describes the plugin developed, starting with an overview of the
chosen plugin type, then describing the file structure of the plugin and finally its
usage.

Part of the following documentation is oriented towards the official Moodle
documentation for the Assignment Submission Plugin which can be found here:
https://docs.moodle.org/dev/Assign_submission_plugins

 9

https://docs.moodle.org/dev/Assign_submission_plugins%20

Plugin Type – Assignment Submission Plugin

Moodle provides more than 50 standardized plugin types to choose from when
writing a plugin and if none of the standardized types fit there is the “local” type for a
generic plugin for local customisation.

For our case the Assignment Submission Plugin type was the best fit. It allows you
to display custom form fields to the students when they are editing their assignment
submission as well as to the teachers when there are editing the assignment
settings. It also has full control over the display of the submitted assignment to
graders and students.

In short the main features are:

● An assignment submission plugin can add settings to the module settings
page.

● An assignment submission plugin can show a summary of the submission to
students and graders.

● An assignment submission plugin can add form fields to the student
submission page.

File Structure

All the files of the MoDoCoT assignment submission plugin should be located under
“mod/assign/submission/modocot” within the root folder of the Moodle installation.
This section briefly describes the files and their purpose within the plugin. Some files

will be explained in more detail where applicable. For more information about the

files described please have a look at the official Moodle documentation and/or the

source code of the plugin:

https://transfer.hft-stuttgart.de/gitlab/HFTSoftwareProject/moodle-assignsubmission_
modocot

version.php

This file is used to tell Moodle the version information about our plugin, so that it can
be installed and upgraded correctly. This information is added to version.php, which
is also the case for any other type of Moodle plugin.

For more information please refer to:​version.php

 10

https://transfer.hft-stuttgart.de/gitlab/HFTSoftwareProject/moodle-assignsubmission_modocot
https://transfer.hft-stuttgart.de/gitlab/HFTSoftwareProject/moodle-assignsubmission_modocot
https://docs.moodle.org/dev/version.php

settings.php

This settings file allows us to add custom settings to the system wide configuration
page for our plugin.

As is there are two settings described in this file for the MoDoCoT plugin:
● default: A checkbox to indicate if the plugin should be enabled by default

when creating a new assignment.
● Web service base url: A textfield to define the base url of the web service

that is used to communicate the files to and perform the actual tests.

lang/<country_code>/assignsubmission_modocot.php

These are the language files for the plugin. Depending on the language to support,
the language files reside in a different subfolder of lang. For example:

● English: lang/en/assignsubmission_modocot.php
● German: lang/de/assignsubmission_ modocot.php
● The filename itself should be the same as ​​the component name of the

plugin. The component name of the plugin has the form of
<plugintype>_<pluginname>, so assignsubmission_modocot.

Such a language file contains several key,value entries in the form of $string[“key”]
= “Value”; where the key is the same throughout the different language files and the
value is depending on the given language.

Moodle provides a dedicated String API that allows – given a key – the retrieval of
the value depending on the selected language (e.g. get_string(“key”, “default
value”)).

db/upgrade.php

This file handles upgrading the plugin to match the latest version. If for example a
newer version of the plugin requires additional database tables or columns, this is
the place to define them.
See ​Activity_modules#upgrade.php​for more information.

db/install.xml

This is where any database tables required to save this plugins data are defined.
Moodle provides a dedicated XML schema to model this kind of information with
elements such as TABLENAME, FIELDS and KEY. In addition Moodle comes with a
XMLDB editor that supports the creation of the install.xml without having to directly
get in touch with XML.

 11

https://docs.moodle.org/dev/Activity_modules#upgrade.php

The code below shows for example how the table “modocot_testfailure” is defined,
with all its fields as well as primary and foreign key definitions.

<​TABLE​ ​NAME​=​"modocot_testfailure"​ ​COMMENT​=​"Info about the failures occured during
test​ ​execution."​>
<​FIELDS​>

<​FIELD​ ​NAME​=​"id"​ ​TYPE​=​"int"​ ​LENGTH​=​"10"​ ​NOTNULL​=​"true"​ ​SEQUENCE​=​"true"​/>
<​FIELD​ ​NAME​=​"testresult_id"​ ​TYPE​=​"int"​ ​LENGTH​=​"10"​ ​NOTNULL​=​"true"​ ​SEQUENCE​​​=​"false"​/>​ ​​<​FIELD​
NAME​=​"testheader"​ ​TYPE​=​"char"​ ​LENGTH​=​"255"​ ​NOTNULL​=​"true"​ ​SEQUENCE​=​"false"​/>​ ​​<​FIELD​
NAME​=​"message"​ ​TYPE​=​"char"​ ​LENGTH​=​"255"​ ​NOTNULL​​​=​"false"​ ​SEQUENCE​=​"false"​/>​ ​​<​FIELD​
NAME​=​"trace"​ ​TYPE​=​"text"​ ​NOTNULL​=​"false"​ ​SEQUENCE​=​"false"​/>

</​FIELDS​>
<​​​KEYS​​​>​

<​KEY​ ​NAME​=​"primary"​ ​TYPE​=​"primary"​ ​FIELDS​=​"id"​/>
<​KEY​ ​NAME​=​"fk_testresult"​ ​TYPE​=​"foreign"​ ​FIELDS​=​"testresult_id"

REFTABLE​=​"modocot​_testresult"​ REFFIELDS​=​"id"​/>​
</​KEYS​>

</​TABLE​>

The general structure of data is depicted in the following ER-Model.

 12

Every time a new MoDoCoT assignment is created in Moodle, a new instance of an
“assignsubmission_modocot” entity is created. Again, the name of this table has to
be in the form of <plugintype>_<pluginname>. On submission of a task file, the
backend web service will be contacted and responds with one or more test results
or compilation errors encoded as a JSON-String. The JSON-String will then be
parsed and the data is stored in the corresponding database tables for future
retrieval.

locallib.php

This is where all the functionality for this plugin is defined. All submission plugins
must define a class with the component name of the plugin that extends
assign_submission_plugin​.

class​ ​assign_submission_modocot​ ​extends​ ​assign_submission_plugin {

That means we have the following class hierarchy:

The ​​assign_submission_plugin class is an abstract base class all assignment
submission plugins must extend. It contains a small number of additional functions
that only apply to submission plugins.
The ​​assign_plugin class is an abstract class that is the base class for all
assignment plugin (feedback or submission plugins). It provides access to the
assign which represents the current assignment instance through
“$this->assignment”.
Overall those two classes provide a number of public functions, so called hooks,
that can be overridden in order to implement the functionality needed.

 13

In the following a few selected functions will be shortly described to give an
impression of the kind of hooks that are present.

● get_settings()​​​: The get_settings function is called when building the settings
page for the assignment. It allows this plugin to add a list of settings to the
form. In case of the MoDoCoT plugin a file manager to allow the teachers to
upload their JUnit test ZIP is added. Its overridden from the assign_plugin
class.

● save_settings(): ​The save_settings function is called when the assignment
settings page is submitted, either for a new assignment or when editing an
existing one. In the MoDoCoT plugin this function saves the JUnit test ZIP
selected by the teacher and transfers the file to the backend web service. Its
overridden from the assign_plugin class.

● get_form_elements_for_user(): ​This function is called when building the
submission form and allows (like the get_settings function for the settings) to
add a list of elements to the submission form. In case of the MoDoCoT plugin
this function adds file manager to allow the students to upload their repository
ZIP file. Its overridden from the assign_plugin class.

● save(): ​​This function is called to save a user submission. Within the
 MoDoCoT​ ​plugin this function does the following things:

○ Save the uploaded repository ZIP file with tasks in the Moodle database.
○ Call the backend web service to transfer and the test the file
○ Receive and the process the web service response
○ Save the test results in the Moodle database

● view_summary(): ​This function is called to display a summary of the
submission to both markers (teachers) and students. For the students this
summary will be shown within the submission status table and for the
teachers within a column of the grading table. In the MoDoCoT plugin this
method returns a more compact view (only essential data) for the grading
table and a detailed view for the students submission status table.

public​ ​function​ ​view_summary​(​stdClass $submission​,​ ​&​ ​$showviewlink​)​ ​{

global​ ​$PAGE;
if​ ​(​$PAGE​->​url​->​get_param​(​"action"​)​ ​​==​ ​​"grading"​)​ ​{

return​ ​$​this​-​>​view​_grading_summary​(​$​submission​,​ ​$showviewlink​);​
}​ ​​else​​​ ​{

return​ ​$​this​-​>​view​_student_summary​(​$​submission​);​
}

}
● delete_instance(): ​This function is called when the assignment has been

deleted and is used for clean-up purposes. For the MoDoCoT plugin this
means all the test result, compilation error records etc. are deleted. In

 14

addition the backend web service is called to trigger the deletion of the
assignment’s test files

lib.php

This file is the entry point to many standard Moodle APIs for plugins. An example is
that in order for a plugin to allow users to download files contained within a filearea
belonging to the plugin, they must implement componentname_pluginfile function in
order to perform their own security checks. In case of the MoDoCoT plugin this
function is named “assignsubmission_modocot_pluginfile” and checks for example if
the user requesting the file download is actually logged in and has the necessary
permissions.

Backend

Framework

This is the web service used for the moodle plugin. It is written in Java and uses the
Spring Boot framework. Spring is a largely used Java framework and with the Spring
Boot extension it provides a fast gettings started experience for Spring development.

Build

As build and dependency management tool, Apache Maven is used. The application
can be build using mvn package.

Application configuration

The backend web service is using the application.properties file to configure our
application.

To configure your local configuration create a file called application-local.properties
in /src/main/resources/ and override the properties. Afterwards configure the
application to use the local profile using the run configuration or adding
spring.profiles.active=local to the global application.properties file.

Integration tests

MoDoCoT-Backend has some rudimentary API tests using Spring Boot Testing.
This​ ​tests assure that there won't be any regressions in the API when changing
the​ ​backend code.

 15

To be able to run the integration tests the system where the tests are executed
needs to be a *nix System because a /tmp/ folder must exist. Also the needed
libraries JUnit and Hamcrest need to be downloaded into /opt/mojec/junit/. This is
the reason why the tests are disabled by default so it can be build on MS Windows
systems. The tests can be enabled by setting -DskipTests=false

Overview of MoDoCoT Class UML

 16

List​ of important Classes & Functions

1. UnzipUtil:
a. unzip(file): Utility function to unzip the uploaded files and saves them

to disk. Also checks if the ZIP file is valid.

2. JUnitTestHelper:
a. runUnitTests: creates a temporary folder for the compilation output,

loads compiled classes into the classloader and runs JUnit tests.
Returns a list of all successful, failed and not compilable tests.

b. compile: Sets the compiler option for a specific output path, compiles
it, and if the compilation fails, tries to compile again without the not
compilable file.

c. buildClassPath: Builds a custom class path. This is needed because
the JUnit.jar dependency needs to be in the classpath when compiling
the JUnit tests.

d. getUnitTestFiles: Gets all the JUnit Test files from the specified path.

3. UnitTestUpload
a. uploadUnitTestFile: REST resource for the JUnit test upload: Creates

one folder per assignment and unzipes the JUnit files into this
subfolder.

b. deleteUnitTestFiles: REST resource for delete uploaded JUnit tests.

4. TaskUpload:
a. uploadAndTestFile: REST resource for the upload of the Java files.

Unzips the files into the subfolder and runs the tests or it clones the
repositry from the link which is in the repo.txt file. Afterwards it creates
/ formats the result for the frontend.

 17

Deployment

Docker installation:

● Installing Docker Toolbox adds these software:

○ For Windows:
■ Docker Client for Windows
■ Docker Machine for Windows
■ Docker Compose for Windows
■ VirtualBox
■ Kitematic for Windows (Alpha)
■ ​​Git for Windows

○ For Linux:
■ sudo apt install docker.io

● Installing Docker Toolbox provides a Docker Terminal for running all
Dockerfiles & images

● Then comes creating Dockerfiles as per the requirements

● The Dockerfile runs using Docker Terminal

Dockerfile for MoDoCoT:

● This Docker image provides the LAMP stack, installs the latest
bitnami-moodle including a SQLite3-Database and the ​MoDoCoT moodle
plugin for JUnit Test Assignments​.

Docker-Compose:

❖ Docker-compose is used to set up relatively complicated Docker networks
and to change or restart them if necessary. In this way you can manage
multiple containers. A side effect is that you only need a YML file.

❖ Each compose file is named docker-compose.yml and can not be changed,

otherwise the container won't start. These are always started with the
following command : ​sudo docker-compose up –d

 18

https://transfer.hft-stuttgart.de/gitlab/HFTSoftwareProject/moodle-assignsubmission_modocot.git
https://transfer.hft-stuttgart.de/gitlab/HFTSoftwareProject/moodle-assignsubmission_modocot.git

❖ This file is structured like this :

❖ A container with a database is started in the Docker compose (MariaDB),

which is called mariadb_compose. So it can be started with ​docker-compose
up -d mariadb_compose​. If you want to start several containers, just use
docker-compose up -d​.

❖ With container_name you give the container a name, this is useful if you have

loaded many Docker containers. Because without that, random names would
be given and you completely lose the overview.

❖ With a volume, paths on the host system can be linked to paths within the

container. In this way, files are retained when the container is updated or
when the container / server is restarted.

❖ With an environment, commands are executed within the container.

 19

❖ With the specification ports it is possible to address a container via a port

❖ Restart tells the Docker daemon that this container should be started every

time the server is restarted. Possible commands would be

Continuous Deployment environment:

The software installation required on KVM server:
● JDK:​​​​Execute following commands on the terminal for installation

○ sudo apt​-​get​ install ​default​-​jdk
○ sudo apt​-​get​ install ​default​-​jre

● Maven:​​​​Execute below command on the terminal to install Maven
○ sudo apt-​get​ ​install​ ​maven

● Jenkins: Execute below command on the terminal to get jenkins
○ wget

http://mirrors.jenkins.io/war-stable/latest/jenkins.war

○ save it in accessible folder, go inside that folder using cd
○ Execute below command on the terminal to install Jenkins

java –jar jenkins.war
● To push the latest image on the Docker machine. To pull the latest changes

for the plugin to update the MoDoCoT Front-End plugin.

Docker Toolbox installation:

Click the below link to install the Docker tool box on windows machine
https://docs.docker.com/toolbox/toolbox_install_windows​

MoDoCoT - Docker Hub:

https://hub.docker.com/r/hftstuttgart/modocot-backend

Jenkins installation:

Click the below link to get the Jenkins war file for installation
https://jenkins.io/

Continuous deployment workflow

○ Execute below command on the terminal to install Jenkins
java –jar jenkins.war

 20

http://mirrors.jenkins.io/war-stable/latest/jenkins.war
https://docs.docker.com/toolbox/toolbox_install_windows
https://hub.docker.com/r/hftstuttgart/modocot-backend
https://jenkins.io/

● To push the latest image on the Docker machine. To pull the latest changes
for the plugin to update the MoDoCoT Front-End plugin.

Docker Toolbox installation:

Click the below link to install the Docker tool box on windows machine
https://docs.docker.com/toolbox/toolbox_install_windows​/

1. The Teacher uploads a ZIP-Archive with a Text-File "repo.txt" witch contains a
link to a Git-Repository containing the JUnit-Tests to the Moodle-Frontend.
2. Moodle-Frontend passes the ZIP to the MoDoCoT-Backend.
3. The Backend unzips the archive and clones the Repository with the tests on an

internal Git-Server.
4. The Student uploads a ZIP-Archive with a Text-File "repo.txt" witch contains a link
to a Git-Repository containing the task-code to the Moodle-Frontend.
5. Moodle-Fontend passes the ZIP to the MoDoCoT-Backend.
6. The Backend unzips the archive and clones the Repository with the tasks on an

internal Git-Server in an unique Repository together with the tests.
7. Then the Backend starts a Jenkins-Pipeline. This pipeline searches the

Jenkinsfile in the Repository, witch setup the 'JUnitTestLauncher'-Docker
container, and executes it.

8. The taks and tests need to be cloned into the container. Which are in one
Repository, identified with AssignmentID and UUID.

9. The 'JUnitTestLauncher'-Repository needs to be cloned into it as well.
10. Then the container starts and execute the testing.
11. The results are send back to the Backend via a REST-API.
12. Finally the results are shown in the Moodle-Frontend.

 21

https://docs.docker.com/toolbox/toolbox_install_windows

Information on SSH Communication

To pull the latest changes of the Moodle plugin we created a shell script that will be
use to execute a git pull and get the latest changes for the MoDoCoT Plugin. This is
done via Shell Execution command in Jenkins

This will connect to the Docker machine via ssh and executes a script (which exists
in the Jenkins machine)

To connect to the Docker Machine via ssh, username and password entry are
required at each connection, which made a problem in the automation process. To
bypass this problem the authentication using keys is used.

SSH Login without username and password

To be able to login from Jenkins to the Docker Machine using ssh the following
steps should be done:

1. Run terminal on the Jenkins machine.

2. Execute “ssh-keygen” to generate the public and private key of the Jenkins
Machine.

3. Execute “ssh-copy-id –i ~/.ssh/id_rsa.pub 10.40.10.144” (10.40.10.144
Docker Machine IP) which appends the public key to the authorized_keys file
in the Docker Machine.

4. Enter the Docker Machine Password.

After following the above steps, all ssh connections from the Jenkins Machine to the
Docker Machine will run without any other request for username or password.

Jenkins​ Job: Settings for MoDoCoT -Frontend:

1. Create new item with Free style project. ​​ ​MoDoCoT -Frontend

2. Once the New Item is created go to the Configuration to apply settings as per
requirement, you can provide Project Name & Description

3. Source Code Management: ​​In source code management we will set the
URL of the Git repository from where the code is to be referred

 22

4. Build Triggers:​​​Here we specify how often the Jenkins should trigger the

Build. In the configuration settings, we have selected Poll SCM and the
Schedule as H/2 * * * * that means it will trigger Build every 2 minutes

5. Build Environment:​​Here settings related to what exactly has to be done is

entered. In the below screenshot: Execute Shell: Connects to the Docker
machine via ssh and executes a script (which exists in the Jenkins machine)
to execute a git pull and get the latest changes for the MoDoCoT Plugin.

 23

Jenkins Job: Settings to Automate MoDoCoT -Backend:

1. Create a new item with Free style project. ​ ​MoDoCoT -Backend​​.
2. Once the New Item is created go to the Configuration to apply settings as

per requirement, you can provide Project Name & Description.
3. Source Code Management:​​Here we will set the URL of the Git repository

from where the code is to be referred.

4. Build Triggers​​: Here we specify how often the Jenkins should trigger the
Build. In the configuration settings, we have selected Poll SCM and the
Schedule as H/2 * * * * that means it will trigger Build every 2 minutes.

5. Build Environment:​​Here settings related to what exactly has to be done is
entered In the configuration settings: Clean package using Maven plugin:
After the latest changes are pulled from the GitHub, this will remove and again
package all. Docker Build & Publish Plugin: To compile, build the new image
and push the new image to Docker Hub. Execute Shell: Connects to the
Docker machine via ssh and executes a script (which exists in the Jenkins
machine) to pull and run the new image.

The plugin used to perform docker operation was ‘Cloudbees Docker Build
Push & Plugin’

 24

Demo

The backend webservice has to be configured for the backend. This can be done in
moodle: Site administration -> Plugins -> Plugins Overview -> Find "Junit Exercise
Corrector". Go to the settings of the plugin and configure the backend URL as shown
below.

When adding new assignment, the Dockerized Code Testing is the type of
submission to be selected to submit and run JUnit programs. After the selection of
the submission types, the zipped repo.txt should be submitted to run the test and get
back the weighted results.

 25

Make sure the submission of the file should be a zipped format, the Exercise
Corrector does not accept normal files and throws back Error message to the user.

After successfully adding the ZIP file, the Dockerized Code Testing processes, run
and compile the ZIP file. This will then calculates the number of successful tests
and the compilation error, then submitted for grading. The overall results are
presented so the professor grades the students exercise.

 26

 27

