diff --git a/ampel-firmware/co2_sensor.cpp b/ampel-firmware/co2_sensor.cpp index 7b76dd405a26e151298c213e21bad532cf2ce9fa..080ca7ba6021cc76bd3616c104751af81fa1ff96 100644 --- a/ampel-firmware/co2_sensor.cpp +++ b/ampel-firmware/co2_sensor.cpp @@ -18,7 +18,7 @@ namespace config { } #if defined(ESP8266) -# include "src/lib/EspSoftwareSerial/SoftwareSerial.h" +# include "src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.h" # define S8_RX_PIN 13 // GPIO13, a.k.a. D7, connected to S8 Tx pin. # define S8_TX_PIN 15 // GPIO15, a.k.a. D8, connected to S8 Rx pin. SoftwareSerial S8_serial(S8_RX_PIN, S8_TX_PIN); diff --git a/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/LICENSE b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..a7371486bf3872f70198984fbd8486ae8cdeaf9a --- /dev/null +++ b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2019 Rob Miles + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/README.md b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/README.md new file mode 100644 index 0000000000000000000000000000000000000000..f1b57c98c787f598a2aea39b0200d815cfcf2606 --- /dev/null +++ b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/README.md @@ -0,0 +1,37 @@ +# Esp8266EdgeSoftwareSerial +Software serial for the ESP8266 that uses edge triggered interrupts to improve performance. +Incoming characters do not block programs for the time it takes them to arrive, leading to signficant performance improvements when used on serial data ports running at speeds of 9600 baud or less. Note that the slower the data rate, the more useful this driver becomes. For high speeds it doesn't confer as much of an advantage. + + +You can drop the files into your Arduino sketch folder and use them as straight replacements for the SoftwareSerial library files. Simply replace the < and > characters with double quote characters in the include statement to use the new library: + +```c++ +#include <SoftwareSerial.h> +``` +with + +```c++ +#include "SoftwareSerial.h" +``` + +To use the edge triggered operation add an extra parameter to the constructor for your software serial object: + + +```c++ +SoftwareSerial gpsSerial = new SoftwareSerial(12, -1, false, 128, true); +``` + +The above statement creates a gps receiver that listens on pin 12 but does not transmit anything (that's what the -1 means in the constructor). +The data is not inverted (that's what false means) and it is using a 128 byte buffer for incoming characters. + +The final parameter (which is true in the above code) selects edge operation. + +If you leave the final parameter off your constructor the SoftwareSerial library works in exaclty the same way as the original library. In other words it defaults to non-edge operation. + +# Late charcters + +There is one issue with this implmenentation. It is not guaranteed that the last character of a sequence of characters will be detected when it arrives. This happens because the driver needs to detect a signal change to detect data and some values don't have a signal change at their end. + +The "late" character will be registered when the next character arrives. This is not a problem for devices such as GPS sensors and Air Quality sensors as these transmit data continuously, but it would be an issue if you used this mechanism on a user terminal connection. Having said that, you would not need to use edge triggering on such an interface, as your user will not type so quickly and continuously as to cause a problem. + +Rob Miles diff --git a/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.cpp b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b02a66e439e4c63b87c014c467f01ef653fa9ab6 --- /dev/null +++ b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.cpp @@ -0,0 +1,400 @@ +/* + +SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266. +Copyright (c) 2015-2016 Peter Lerup. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + +*/ + +#include <Arduino.h> + +// The Arduino standard GPIO routines are not enough, +// must use some from the Espressif SDK as well +extern "C" { +#include "gpio.h" +} + +#include "SoftwareSerial.h" + +#define MAX_PIN 15 + +// As the Arduino attachInterrupt has no parameter, lists of objects +// and callbacks corresponding to each possible GPIO pins have to be defined +SoftwareSerial *ObjList[MAX_PIN + 1]; + +void ICACHE_RAM_ATTR sws_isr_0() { ObjList[0]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_1() { ObjList[1]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_2() { ObjList[2]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_3() { ObjList[3]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_4() { ObjList[4]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_5() { ObjList[5]->rxRead(); }; +// Pin 6 to 11 can not be used +void ICACHE_RAM_ATTR sws_isr_12() { ObjList[12]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_13() { ObjList[13]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_14() { ObjList[14]->rxRead(); }; +void ICACHE_RAM_ATTR sws_isr_15() { ObjList[15]->rxRead(); }; + +static boolean SerialBusy = false; + +static void(*ISRList[MAX_PIN + 1])() = { + sws_isr_0, + sws_isr_1, + sws_isr_2, + sws_isr_3, + sws_isr_4, + sws_isr_5, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + sws_isr_12, + sws_isr_13, + sws_isr_14, + sws_isr_15 +}; + +SoftwareSerial::SoftwareSerial(int receivePin, int transmitPin, bool inverse_logic, unsigned int buffSize, bool edge_triggered) { + m_oneWire = (receivePin == transmitPin); + m_rxValid = m_txValid = m_txEnableValid = false; + m_buffer = NULL; + m_invert = inverse_logic; + m_edge = edge_triggered; + m_overflow = false; + m_rxEnabled = false; + if (isValidGPIOpin(receivePin)) { + m_rxPin = receivePin; + m_buffSize = buffSize; + m_buffer = (uint8_t*)malloc(m_buffSize); + if (m_buffer != NULL) { + m_rxValid = true; + m_inPos = m_outPos = 0; + pinMode(m_rxPin, INPUT); + ObjList[m_rxPin] = this; + } + } + if (isValidGPIOpin(transmitPin) || (!m_oneWire && (transmitPin == 16))) { + m_txValid = true; + m_txPin = transmitPin; + if (!m_oneWire) { + pinMode(m_txPin, OUTPUT); + digitalWrite(m_txPin, !m_invert); + } + } + // Default speed + begin(9600); +} + +SoftwareSerial::~SoftwareSerial() { + enableRx(false); + if (m_rxValid) + ObjList[m_rxPin] = NULL; + if (m_buffer) + free(m_buffer); +} + +bool SoftwareSerial::isValidGPIOpin(int pin) { + return (pin >= 0 && pin <= 5) || (pin >= 12 && pin <= MAX_PIN); +} + +void SoftwareSerial::begin(long speed) { + // Use getCycleCount() loop to get as exact timing as possible + m_bitTime = F_CPU / speed; + // By default enable interrupt during tx only for low speed + m_intTxEnabled = speed < 9600; + + if (!m_rxEnabled) + enableRx(true); +} + +long SoftwareSerial::baudRate() { + return F_CPU / m_bitTime; +} + +void SoftwareSerial::setTransmitEnablePin(int transmitEnablePin) { + if (isValidGPIOpin(transmitEnablePin)) { + m_txEnableValid = true; + m_txEnablePin = transmitEnablePin; + pinMode(m_txEnablePin, OUTPUT); + digitalWrite(m_txEnablePin, LOW); + } + else { + m_txEnableValid = false; + } +} + +void SoftwareSerial::enableIntTx(bool on) { + m_intTxEnabled = on; +} + +void SoftwareSerial::enableTx(bool on) { + if (m_oneWire && m_txValid) { + if (on) { + enableRx(false); + digitalWrite(m_txPin, !m_invert); + pinMode(m_rxPin, OUTPUT); + } + else { + digitalWrite(m_txPin, !m_invert); + pinMode(m_rxPin, INPUT); + enableRx(true); + } + delay(1); // it's important to have a delay after switching + } +} + +void SoftwareSerial::enableRx(bool on) { + if (m_rxValid) { + if (on) { + if (m_edge) + attachInterrupt(m_rxPin, ISRList[m_rxPin], CHANGE); // fire at rising and falling edges + else + attachInterrupt(m_rxPin, ISRList[m_rxPin], m_invert ? RISING : FALLING); + } + else + detachInterrupt(m_rxPin); + m_rxEnabled = on; + } +} + +int SoftwareSerial::read() { + if (!m_rxValid || (m_inPos == m_outPos)) return -1; + uint8_t ch = m_buffer[m_outPos]; + m_outPos = (m_outPos + 1) % m_buffSize; + return ch; +} + +int SoftwareSerial::available() { + if (!m_rxValid) return 0; + int avail = m_inPos - m_outPos; + if (avail < 0) avail += m_buffSize; + return avail; +} + +#define WAIT { while (ESP.getCycleCount()-start < wait) if (m_intTxEnabled) optimistic_yield(1); wait += m_bitTime; } + +size_t SoftwareSerial::write(uint8_t b) { + if (!m_txValid) return 0; + + if (m_invert) b = ~b; + if (!m_intTxEnabled) + // Disable interrupts in order to get a clean transmit + cli(); + if (m_txEnableValid) digitalWrite(m_txEnablePin, HIGH); + unsigned long wait = m_bitTime; + digitalWrite(m_txPin, HIGH); + unsigned long start = ESP.getCycleCount(); + // Start bit; + digitalWrite(m_txPin, LOW); + WAIT; + for (int i = 0; i < 8; i++) { + digitalWrite(m_txPin, (b & 1) ? HIGH : LOW); + WAIT; + b >>= 1; + } + // Stop bit + digitalWrite(m_txPin, HIGH); + WAIT; + if (m_txEnableValid) digitalWrite(m_txEnablePin, LOW); + if (!m_intTxEnabled) + sei(); + return 1; +} + +void SoftwareSerial::flush() { + m_inPos = m_outPos = 0; +} + +bool SoftwareSerial::overflow() { + bool res = m_overflow; + m_overflow = false; + return res; +} + +int SoftwareSerial::peek() { + if (!m_rxValid || (m_inPos == m_outPos)) return -1; + return m_buffer[m_outPos]; +} + +inline bool SoftwareSerial::propgateBits(bool level, int pulseBitLength) +{ + for (int i = 0; i < pulseBitLength; i++) + { + m_rec >>= 1; + if (level) + m_rec |= 0x80; + m_bitNo++; + if (m_bitNo == 8) + { + return true; + } + } + + return false; +} + +inline void SoftwareSerial::setWaitingForStart() +{ + m_getByteState = awaitingStart; +} + +inline void SoftwareSerial::setStartBit(unsigned long start) +{ + // mark - the start of a pulse + // set the timers and wait for the next pulse + m_byteStart = start; + m_pulseStart = start; + m_rec = 0; + m_bitNo = 0; + m_getByteState = gotStart; +} + +void ICACHE_RAM_ATTR SoftwareSerial::rxRead() { + // Advance the starting point for the samples but compensate for the + // initial delay which occurs before the interrupt is delivered + unsigned long wait = m_bitTime + m_bitTime / 3 - 500; + unsigned long start = ESP.getCycleCount(); + if (m_edge) { + + // Get the rxLevel and convert for inverted input + bool rxLevel; + + if (m_invert) + rxLevel = !digitalRead(m_rxPin); + else + rxLevel = digitalRead(m_rxPin); + + unsigned long byteTime; + float byteBitLengthFloat; + int byteBitLength; + + unsigned long pulseTime; + float pulseBitLengthFloat; + int pulseBitLength; + + bool previousBit = !rxLevel; + bool gotByte = false; + + switch (m_getByteState) + { + + case awaitingStart: + if (!rxLevel) + { + setStartBit(start); + } + break; + + case gotStart: + + byteTime = start - m_byteStart; + byteBitLengthFloat = (float)byteTime / m_bitTime; + byteBitLength = (int)(byteBitLengthFloat + 0.5); + + pulseTime = start - m_pulseStart; + pulseBitLengthFloat = (float)pulseTime / m_bitTime; + pulseBitLength = (int)(pulseBitLengthFloat + 0.5); + + // don't want to add the start bit into the value + if (propgateBits(previousBit, pulseBitLength - 1)) + { + // store byte in buffer + int next = (m_inPos + 1) % m_buffSize; + if (next != m_outPos) { + m_buffer[m_inPos] = m_rec; + m_inPos = next; + } + else { + m_overflow = true; + } + setWaitingForStart(); + return; + } + m_pulseStart = start; + m_getByteState = readingBits; + break; + + case readingBits: + + byteTime = start - m_byteStart; + byteBitLengthFloat = (float)byteTime / m_bitTime; + byteBitLength = (int)(byteBitLengthFloat + 0.5); + pulseTime = start - m_pulseStart; + pulseBitLengthFloat = (float)pulseTime / m_bitTime; + pulseBitLength = (int)(pulseBitLengthFloat + 0.5); + + if (byteBitLength > 9) + { + // fill in the last bits with high values + // because this is the start bit of the next byte + propgateBits(true, 8); + + // store the byte in the buffer + int next = (m_inPos + 1) % m_buffSize; + if (next != m_outPos) { + m_buffer[m_inPos] = m_rec; + m_inPos = next; + } + else { + m_overflow = true; + } + setStartBit(start); + } + else + { + if (propgateBits(previousBit, pulseBitLength)) + { + // Store the received value in the buffer unless we have an overflow + int next = (m_inPos + 1) % m_buffSize; + if (next != m_outPos) { + m_buffer[m_inPos] = m_rec; + m_inPos = next; + } + else { + m_overflow = true; + } + setWaitingForStart(); + } + } + m_pulseStart = start; + break; + } + } + else + { + uint8_t rec = 0; + for (int i = 0; i < 8; i++) { + WAIT; + rec >>= 1; + if (digitalRead(m_rxPin)) + rec |= 0x80; + } + if (m_invert) rec = ~rec; + // Stop bit + WAIT; + // Store the received value in the buffer unless we have an overflow + int next = (m_inPos + 1) % m_buffSize; + if (next != m_inPos) { + m_buffer[m_inPos] = rec; + m_inPos = next; + } + } + + // Must clear this bit in the interrupt register, + // it gets set even when interrupts are disabled + GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << m_rxPin); +} diff --git a/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.h b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.h new file mode 100644 index 0000000000000000000000000000000000000000..ace8bef981d0040a72bf615b7b5da1a85047a726 --- /dev/null +++ b/ampel-firmware/src/lib/Esp8266EdgeSoftwareSerial/SoftwareSerial.h @@ -0,0 +1,111 @@ +/* +SoftwareSerial.h + +SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266. +Copyright (c) 2015-2016 Peter Lerup. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + +*/ + +#ifndef SoftwareSerial_h +#define SoftwareSerial_h + +#include <inttypes.h> +#include <Stream.h> + + +// This class is compatible with the corresponding AVR one, +// the constructor however has an optional rx buffer size. +// Speed up to 115200 can be used. + + +class SoftwareSerial : public Stream { +public: + SoftwareSerial(int receivePin, int transmitPin, bool inverse_logic = false, unsigned int buffSize = 64, bool edge_triggered = false); + virtual ~SoftwareSerial(); + + void begin(long speed); + long baudRate(); + // Transmit control pin + void setTransmitEnablePin(int transmitEnablePin); + // Enable or disable interrupts during tx + void enableIntTx(bool on); + + bool overflow(); + int peek(); + + virtual size_t write(uint8_t byte); + virtual int read(); + virtual int available(); + virtual void flush(); + operator bool() {return m_rxValid || m_txValid;} + + // Disable or enable interrupts on the rx pin + void enableRx(bool on); + // One wire control + void enableTx(bool on); + + void rxRead(); + + volatile boolean SerialBusy = false; + + // AVR compatibility methods + bool listen() { enableRx(true); return true; } + void end() { stopListening(); } + bool isListening() { return m_rxEnabled; } + bool stopListening() { enableRx(false); return true; } + + using Print::write; + + void setWaitingForStart(); + void setStartBit(unsigned long start); + bool propgateBits(bool level, int pulseBitLength); + +private: + bool isValidGPIOpin(int pin); + + // Member variables + bool m_edge; + bool m_oneWire; + int m_rxPin, m_txPin, m_txEnablePin; + bool m_rxValid, m_rxEnabled; + bool m_txValid, m_txEnableValid; + bool m_invert; + bool m_overflow; + unsigned long m_bitTime; + bool m_intTxEnabled; + unsigned int m_inPos, m_outPos; + int m_buffSize; + uint8_t *m_buffer; + + // Edge detection management + enum GetByteState { awaitingStart, gotStart, readingBits }; + + volatile GetByteState m_getByteState = awaitingStart; + + volatile unsigned long m_byteStart; + volatile unsigned long m_pulseStart; + + volatile uint8_t m_rec = 0; + volatile uint8_t m_bitNo = 0; + +}; + +// If only one tx or rx wanted then use this as parameter for the unused pin +#define SW_SERIAL_UNUSED_PIN -1 + + +#endif diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/LICENSE b/ampel-firmware/src/lib/EspSoftwareSerial/LICENSE deleted file mode 100644 index f166cc57b2783565bc48e8999103c572fca4c0e4..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/LICENSE +++ /dev/null @@ -1,502 +0,0 @@ - GNU LESSER GENERAL PUBLIC LICENSE - Version 2.1, February 1999 - - Copyright (C) 1991, 1999 Free Software Foundation, Inc. - 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - -[This is the first released version of the Lesser GPL. It also counts - as the successor of the GNU Library Public License, version 2, hence - the version number 2.1.] - - Preamble - - The licenses for most software are designed to take away your -freedom to share and change it. By contrast, the GNU General Public -Licenses are intended to guarantee your freedom to share and change -free software--to make sure the software is free for all its users. - - This license, the Lesser General Public License, applies to some -specially designated software packages--typically libraries--of the -Free Software Foundation and other authors who decide to use it. You -can use it too, but we suggest you first think carefully about whether -this license or the ordinary General Public License is the better -strategy to use in any particular case, based on the explanations below. - - When we speak of free software, we are referring to freedom of use, -not price. Our General Public Licenses are designed to make sure that -you have the freedom to distribute copies of free software (and charge -for this service if you wish); that you receive source code or can get -it if you want it; that you can change the software and use pieces of -it in new free programs; and that you are informed that you can do -these things. - - To protect your rights, we need to make restrictions that forbid -distributors to deny you these rights or to ask you to surrender these -rights. These restrictions translate to certain responsibilities for -you if you distribute copies of the library or if you modify it. - - For example, if you distribute copies of the library, whether gratis -or for a fee, you must give the recipients all the rights that we gave -you. You must make sure that they, too, receive or can get the source -code. If you link other code with the library, you must provide -complete object files to the recipients, so that they can relink them -with the library after making changes to the library and recompiling -it. And you must show them these terms so they know their rights. - - We protect your rights with a two-step method: (1) we copyright the -library, and (2) we offer you this license, which gives you legal -permission to copy, distribute and/or modify the library. - - To protect each distributor, we want to make it very clear that -there is no warranty for the free library. Also, if the library is -modified by someone else and passed on, the recipients should know -that what they have is not the original version, so that the original -author's reputation will not be affected by problems that might be -introduced by others. - - Finally, software patents pose a constant threat to the existence of -any free program. We wish to make sure that a company cannot -effectively restrict the users of a free program by obtaining a -restrictive license from a patent holder. Therefore, we insist that -any patent license obtained for a version of the library must be -consistent with the full freedom of use specified in this license. - - Most GNU software, including some libraries, is covered by the -ordinary GNU General Public License. This license, the GNU Lesser -General Public License, applies to certain designated libraries, and -is quite different from the ordinary General Public License. We use -this license for certain libraries in order to permit linking those -libraries into non-free programs. - - When a program is linked with a library, whether statically or using -a shared library, the combination of the two is legally speaking a -combined work, a derivative of the original library. The ordinary -General Public License therefore permits such linking only if the -entire combination fits its criteria of freedom. The Lesser General -Public License permits more lax criteria for linking other code with -the library. - - We call this license the "Lesser" General Public License because it -does Less to protect the user's freedom than the ordinary General -Public License. It also provides other free software developers Less -of an advantage over competing non-free programs. These disadvantages -are the reason we use the ordinary General Public License for many -libraries. However, the Lesser license provides advantages in certain -special circumstances. - - For example, on rare occasions, there may be a special need to -encourage the widest possible use of a certain library, so that it becomes -a de-facto standard. To achieve this, non-free programs must be -allowed to use the library. A more frequent case is that a free -library does the same job as widely used non-free libraries. In this -case, there is little to gain by limiting the free library to free -software only, so we use the Lesser General Public License. - - In other cases, permission to use a particular library in non-free -programs enables a greater number of people to use a large body of -free software. For example, permission to use the GNU C Library in -non-free programs enables many more people to use the whole GNU -operating system, as well as its variant, the GNU/Linux operating -system. - - Although the Lesser General Public License is Less protective of the -users' freedom, it does ensure that the user of a program that is -linked with the Library has the freedom and the wherewithal to run -that program using a modified version of the Library. - - The precise terms and conditions for copying, distribution and -modification follow. Pay close attention to the difference between a -"work based on the library" and a "work that uses the library". The -former contains code derived from the library, whereas the latter must -be combined with the library in order to run. - - GNU LESSER GENERAL PUBLIC LICENSE - TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION - - 0. This License Agreement applies to any software library or other -program which contains a notice placed by the copyright holder or -other authorized party saying it may be distributed under the terms of -this Lesser General Public License (also called "this License"). -Each licensee is addressed as "you". - - A "library" means a collection of software functions and/or data -prepared so as to be conveniently linked with application programs -(which use some of those functions and data) to form executables. - - The "Library", below, refers to any such software library or work -which has been distributed under these terms. A "work based on the -Library" means either the Library or any derivative work under -copyright law: that is to say, a work containing the Library or a -portion of it, either verbatim or with modifications and/or translated -straightforwardly into another language. (Hereinafter, translation is -included without limitation in the term "modification".) - - "Source code" for a work means the preferred form of the work for -making modifications to it. For a library, complete source code means -all the source code for all modules it contains, plus any associated -interface definition files, plus the scripts used to control compilation -and installation of the library. - - Activities other than copying, distribution and modification are not -covered by this License; they are outside its scope. The act of -running a program using the Library is not restricted, and output from -such a program is covered only if its contents constitute a work based -on the Library (independent of the use of the Library in a tool for -writing it). Whether that is true depends on what the Library does -and what the program that uses the Library does. - - 1. You may copy and distribute verbatim copies of the Library's -complete source code as you receive it, in any medium, provided that -you conspicuously and appropriately publish on each copy an -appropriate copyright notice and disclaimer of warranty; keep intact -all the notices that refer to this License and to the absence of any -warranty; and distribute a copy of this License along with the -Library. - - You may charge a fee for the physical act of transferring a copy, -and you may at your option offer warranty protection in exchange for a -fee. - - 2. You may modify your copy or copies of the Library or any portion -of it, thus forming a work based on the Library, and copy and -distribute such modifications or work under the terms of Section 1 -above, provided that you also meet all of these conditions: - - a) The modified work must itself be a software library. - - b) You must cause the files modified to carry prominent notices - stating that you changed the files and the date of any change. - - c) You must cause the whole of the work to be licensed at no - charge to all third parties under the terms of this License. - - d) If a facility in the modified Library refers to a function or a - table of data to be supplied by an application program that uses - the facility, other than as an argument passed when the facility - is invoked, then you must make a good faith effort to ensure that, - in the event an application does not supply such function or - table, the facility still operates, and performs whatever part of - its purpose remains meaningful. - - (For example, a function in a library to compute square roots has - a purpose that is entirely well-defined independent of the - application. Therefore, Subsection 2d requires that any - application-supplied function or table used by this function must - be optional: if the application does not supply it, the square - root function must still compute square roots.) - -These requirements apply to the modified work as a whole. If -identifiable sections of that work are not derived from the Library, -and can be reasonably considered independent and separate works in -themselves, then this License, and its terms, do not apply to those -sections when you distribute them as separate works. But when you -distribute the same sections as part of a whole which is a work based -on the Library, the distribution of the whole must be on the terms of -this License, whose permissions for other licensees extend to the -entire whole, and thus to each and every part regardless of who wrote -it. - -Thus, it is not the intent of this section to claim rights or contest -your rights to work written entirely by you; rather, the intent is to -exercise the right to control the distribution of derivative or -collective works based on the Library. - -In addition, mere aggregation of another work not based on the Library -with the Library (or with a work based on the Library) on a volume of -a storage or distribution medium does not bring the other work under -the scope of this License. - - 3. You may opt to apply the terms of the ordinary GNU General Public -License instead of this License to a given copy of the Library. To do -this, you must alter all the notices that refer to this License, so -that they refer to the ordinary GNU General Public License, version 2, -instead of to this License. (If a newer version than version 2 of the -ordinary GNU General Public License has appeared, then you can specify -that version instead if you wish.) Do not make any other change in -these notices. - - Once this change is made in a given copy, it is irreversible for -that copy, so the ordinary GNU General Public License applies to all -subsequent copies and derivative works made from that copy. - - This option is useful when you wish to copy part of the code of -the Library into a program that is not a library. - - 4. You may copy and distribute the Library (or a portion or -derivative of it, under Section 2) in object code or executable form -under the terms of Sections 1 and 2 above provided that you accompany -it with the complete corresponding machine-readable source code, which -must be distributed under the terms of Sections 1 and 2 above on a -medium customarily used for software interchange. - - If distribution of object code is made by offering access to copy -from a designated place, then offering equivalent access to copy the -source code from the same place satisfies the requirement to -distribute the source code, even though third parties are not -compelled to copy the source along with the object code. - - 5. A program that contains no derivative of any portion of the -Library, but is designed to work with the Library by being compiled or -linked with it, is called a "work that uses the Library". Such a -work, in isolation, is not a derivative work of the Library, and -therefore falls outside the scope of this License. - - However, linking a "work that uses the Library" with the Library -creates an executable that is a derivative of the Library (because it -contains portions of the Library), rather than a "work that uses the -library". The executable is therefore covered by this License. -Section 6 states terms for distribution of such executables. - - When a "work that uses the Library" uses material from a header file -that is part of the Library, the object code for the work may be a -derivative work of the Library even though the source code is not. -Whether this is true is especially significant if the work can be -linked without the Library, or if the work is itself a library. The -threshold for this to be true is not precisely defined by law. - - If such an object file uses only numerical parameters, data -structure layouts and accessors, and small macros and small inline -functions (ten lines or less in length), then the use of the object -file is unrestricted, regardless of whether it is legally a derivative -work. (Executables containing this object code plus portions of the -Library will still fall under Section 6.) - - Otherwise, if the work is a derivative of the Library, you may -distribute the object code for the work under the terms of Section 6. -Any executables containing that work also fall under Section 6, -whether or not they are linked directly with the Library itself. - - 6. As an exception to the Sections above, you may also combine or -link a "work that uses the Library" with the Library to produce a -work containing portions of the Library, and distribute that work -under terms of your choice, provided that the terms permit -modification of the work for the customer's own use and reverse -engineering for debugging such modifications. - - You must give prominent notice with each copy of the work that the -Library is used in it and that the Library and its use are covered by -this License. You must supply a copy of this License. If the work -during execution displays copyright notices, you must include the -copyright notice for the Library among them, as well as a reference -directing the user to the copy of this License. Also, you must do one -of these things: - - a) Accompany the work with the complete corresponding - machine-readable source code for the Library including whatever - changes were used in the work (which must be distributed under - Sections 1 and 2 above); and, if the work is an executable linked - with the Library, with the complete machine-readable "work that - uses the Library", as object code and/or source code, so that the - user can modify the Library and then relink to produce a modified - executable containing the modified Library. (It is understood - that the user who changes the contents of definitions files in the - Library will not necessarily be able to recompile the application - to use the modified definitions.) - - b) Use a suitable shared library mechanism for linking with the - Library. A suitable mechanism is one that (1) uses at run time a - copy of the library already present on the user's computer system, - rather than copying library functions into the executable, and (2) - will operate properly with a modified version of the library, if - the user installs one, as long as the modified version is - interface-compatible with the version that the work was made with. - - c) Accompany the work with a written offer, valid for at - least three years, to give the same user the materials - specified in Subsection 6a, above, for a charge no more - than the cost of performing this distribution. - - d) If distribution of the work is made by offering access to copy - from a designated place, offer equivalent access to copy the above - specified materials from the same place. - - e) Verify that the user has already received a copy of these - materials or that you have already sent this user a copy. - - For an executable, the required form of the "work that uses the -Library" must include any data and utility programs needed for -reproducing the executable from it. However, as a special exception, -the materials to be distributed need not include anything that is -normally distributed (in either source or binary form) with the major -components (compiler, kernel, and so on) of the operating system on -which the executable runs, unless that component itself accompanies -the executable. - - It may happen that this requirement contradicts the license -restrictions of other proprietary libraries that do not normally -accompany the operating system. Such a contradiction means you cannot -use both them and the Library together in an executable that you -distribute. - - 7. You may place library facilities that are a work based on the -Library side-by-side in a single library together with other library -facilities not covered by this License, and distribute such a combined -library, provided that the separate distribution of the work based on -the Library and of the other library facilities is otherwise -permitted, and provided that you do these two things: - - a) Accompany the combined library with a copy of the same work - based on the Library, uncombined with any other library - facilities. This must be distributed under the terms of the - Sections above. - - b) Give prominent notice with the combined library of the fact - that part of it is a work based on the Library, and explaining - where to find the accompanying uncombined form of the same work. - - 8. You may not copy, modify, sublicense, link with, or distribute -the Library except as expressly provided under this License. Any -attempt otherwise to copy, modify, sublicense, link with, or -distribute the Library is void, and will automatically terminate your -rights under this License. However, parties who have received copies, -or rights, from you under this License will not have their licenses -terminated so long as such parties remain in full compliance. - - 9. You are not required to accept this License, since you have not -signed it. However, nothing else grants you permission to modify or -distribute the Library or its derivative works. These actions are -prohibited by law if you do not accept this License. Therefore, by -modifying or distributing the Library (or any work based on the -Library), you indicate your acceptance of this License to do so, and -all its terms and conditions for copying, distributing or modifying -the Library or works based on it. - - 10. Each time you redistribute the Library (or any work based on the -Library), the recipient automatically receives a license from the -original licensor to copy, distribute, link with or modify the Library -subject to these terms and conditions. You may not impose any further -restrictions on the recipients' exercise of the rights granted herein. -You are not responsible for enforcing compliance by third parties with -this License. - - 11. If, as a consequence of a court judgment or allegation of patent -infringement or for any other reason (not limited to patent issues), -conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot -distribute so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you -may not distribute the Library at all. For example, if a patent -license would not permit royalty-free redistribution of the Library by -all those who receive copies directly or indirectly through you, then -the only way you could satisfy both it and this License would be to -refrain entirely from distribution of the Library. - -If any portion of this section is held invalid or unenforceable under any -particular circumstance, the balance of the section is intended to apply, -and the section as a whole is intended to apply in other circumstances. - -It is not the purpose of this section to induce you to infringe any -patents or other property right claims or to contest validity of any -such claims; this section has the sole purpose of protecting the -integrity of the free software distribution system which is -implemented by public license practices. Many people have made -generous contributions to the wide range of software distributed -through that system in reliance on consistent application of that -system; it is up to the author/donor to decide if he or she is willing -to distribute software through any other system and a licensee cannot -impose that choice. - -This section is intended to make thoroughly clear what is believed to -be a consequence of the rest of this License. - - 12. If the distribution and/or use of the Library is restricted in -certain countries either by patents or by copyrighted interfaces, the -original copyright holder who places the Library under this License may add -an explicit geographical distribution limitation excluding those countries, -so that distribution is permitted only in or among countries not thus -excluded. In such case, this License incorporates the limitation as if -written in the body of this License. - - 13. The Free Software Foundation may publish revised and/or new -versions of the Lesser General Public License from time to time. -Such new versions will be similar in spirit to the present version, -but may differ in detail to address new problems or concerns. - -Each version is given a distinguishing version number. If the Library -specifies a version number of this License which applies to it and -"any later version", you have the option of following the terms and -conditions either of that version or of any later version published by -the Free Software Foundation. If the Library does not specify a -license version number, you may choose any version ever published by -the Free Software Foundation. - - 14. If you wish to incorporate parts of the Library into other free -programs whose distribution conditions are incompatible with these, -write to the author to ask for permission. For software which is -copyrighted by the Free Software Foundation, write to the Free -Software Foundation; we sometimes make exceptions for this. Our -decision will be guided by the two goals of preserving the free status -of all derivatives of our free software and of promoting the sharing -and reuse of software generally. - - NO WARRANTY - - 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO -WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. -EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR -OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY -KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE -LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME -THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN -WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY -AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU -FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR -CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE -LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING -RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A -FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF -SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH -DAMAGES. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Libraries - - If you develop a new library, and you want it to be of the greatest -possible use to the public, we recommend making it free software that -everyone can redistribute and change. You can do so by permitting -redistribution under these terms (or, alternatively, under the terms of the -ordinary General Public License). - - To apply these terms, attach the following notices to the library. It is -safest to attach them to the start of each source file to most effectively -convey the exclusion of warranty; and each file should have at least the -"copyright" line and a pointer to where the full notice is found. - - <one line to give the library's name and a brief idea of what it does.> - Copyright (C) <year> <name of author> - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, write to the Free Software - Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - -Also add information on how to contact you by electronic and paper mail. - -You should also get your employer (if you work as a programmer) or your -school, if any, to sign a "copyright disclaimer" for the library, if -necessary. Here is a sample; alter the names: - - Yoyodyne, Inc., hereby disclaims all copyright interest in the - library `Frob' (a library for tweaking knobs) written by James Random Hacker. - - <signature of Ty Coon>, 1 April 1990 - Ty Coon, President of Vice - -That's all there is to it! \ No newline at end of file diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/README.md b/ampel-firmware/src/lib/EspSoftwareSerial/README.md deleted file mode 100644 index 052d9c7c62a132a65b4897cb26e0be4ed9002d7b..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/README.md +++ /dev/null @@ -1,169 +0,0 @@ -# EspSoftwareSerial - -## Implementation of the Arduino software serial library for the ESP8266 / ESP32 family - -This fork implements interrupt service routine best practice. -In the receive interrupt, instead of blocking for whole bytes -at a time - voiding any near-realtime behavior of the CPU - only level -change and timestamp are recorded. The more time consuming phase -detection and byte assembly are done in the main code. - -Except at high bitrates, depending on other ongoing activity, -interrupts in particular, this software serial adapter -supports full duplex receive and send. At high bitrates (115200bps) -send bit timing can be improved at the expense of blocking concurrent -full duplex receives, with the `SoftwareSerial::enableIntTx(false)` function call. - -The same functionality is given as the corresponding AVR library but -several instances can be active at the same time. Speed up to 115200 baud -is supported. Besides a constructor compatible to the AVR SoftwareSerial class, -and updated constructor that takes no arguments exists, instead the `begin()` -function can handle the pin assignments and logic inversion. -It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer. -This way, it is a better drop-in replacement for the hardware serial APIs on the ESP MCUs. - -Please note that due to the fact that the ESPs always have other activities -ongoing, there will be some inexactness in interrupt timings. This may -lead to inevitable, but few, bit errors when having heavy data traffic -at high baud rates. - -This library supports ESP8266, ESP32, ESP32-S2 and ESP32-C3 devices. - -## Resource optimization - -The memory footprint can be optimized to just fit the amount of expected -incoming asynchronous data. -For this, the `SoftwareSerial` constructor provides two arguments. First, the -octet buffer capacity for assembled received octets can be set. Read calls are -satisfied from this buffer, freeing it in return. -Second, the signal edge detection buffer of 32bit fields can be resized. -One octet may require up to to 10 fields, but fewer may be needed, -depending on the bit pattern. Any read or write calls check this buffer -to assemble received octets, thus promoting completed octets to the octet -buffer, freeing fields in the edge detection buffer. - -Look at the swsertest.ino example. There, on reset, ASCII characters ' ' to 'z' -are sent. This happens not as a block write, but in a single write call per -character. As the example uses a local loopback wire, every outgoing bit is -immediately received back. Therefore, any single write call causes up to -10 fields - depending on the exact bit pattern - to be occupied in the signal -edge detection buffer. In turn, as explained before, each single write call -also causes received bit assembly to be performed, promoting these bits from -the signal edge detection buffer to the octet buffer as soon as possible. -Explaining by way of contrast, if during a a single write call, perhaps because -of using block writing, more than a single octet is received, there will be a -need for more than 10 fields in the signal edge detection buffer. -The necessary capacity of the octet buffer only depends on the amount of incoming -data until the next read call. - -For the swsertest.ino example, this results in the following optimized -constructor arguments to spend only the minimum RAM on buffers required: - -The octet buffer capacity (`bufCapacity`) is 95 (93 characters net plus two tolerance). -The signal edge detection buffer capacity (`isrBufCapacity`) is 11, as each -single octet can have up to 11 bits on the wire, -which are immediately received during the write, and each -write call causes the signal edge detection to promote the previously sent and -received bits to the octet buffer. - -In a more generalized scenario, calculate the bits (use message size in octets -times 10) that may be asynchronously received to determine the value for -`isrBufCapacity` in the constructor. Also use the number of received octets -that must be buffered for reading as the value of `bufCapacity`. -The more frequently your code calls write or read functions, the greater the -chances are that you can reduce the `isrBufCapacity` footprint without losing data, -and each time you call read to fetch from the octet buffer, you reduce the -need for space there. - -## SoftwareSerialConfig and parity -The configuration of the data stream is done via a `SoftwareSerialConfig` -argument to `begin()`. Word lengths can be set to between 5 and 8 bits, parity -can be N(one), O(dd) or E(ven) and 1 or 2 stop bits can be used. The default is -`SWSERIAL_8N1` using 8 bits, no parity and 1 stop bit but any combination can -be used, e.g. `SWSERIAL_7E2`. If using EVEN or ODD parity, any parity errors -can be detected with the `readParity()` and `parityEven()` or `parityOdd()` -functions respectively. Note that the result of `readParity()` always applies -to the preceding `read()` or `peek()` call, and is undefined if they report -no data or an error. - -To allow flexible 9-bit and data/addressing protocols, the additional parity -modes MARK and SPACE are also available. Furthermore, the parity mode can be -individually set in each call to `write()`. - -This allows a simple implementation of protocols where the parity bit is used to -distinguish between data and addresses/commands ("9-bit" protocols). First set -up SoftwareSerial with parity mode SPACE, e.g. `SWSERIAL_8S1`. This will add a -parity bit to every byte sent, setting it to logical zero (SPACE parity). - -To detect incoming bytes with the parity bit set (MARK parity), use the -`readParity()` function. To send a byte with the parity bit set, just add -`MARK` as the second argument when writing, e.g. `write(ch, SWSERIAL_PARITY_MARK)`. - -## Checking for correct pin selection / configuration -In general, most pins on the ESP8266 and ESP32 devices can be used by SoftwareSerial, -however each device has a number of pins that have special functions or require careful -handling to prevent undesirable situations, for example they are connected to the -on-board SPI flash memory or they are used to determine boot and programming modes -after powerup or brownouts. These pins are not able to be configured by this library. - -The exact list for each device can be found in the -[ESP32 data sheet](https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf) -in sections 2.2 (Pin Descriptions) and 2.4 (Strapping pins). There is a discussion -dedicated to the use of GPIO12 in this -[note about GPIO12](https://github.com/espressif/esp-idf/tree/release/v3.2/examples/storage/sd_card#note-about-gpio12). -Refer to the `isValidGPIOpin()`, `isValidRxGPIOpin()` and `isValidTxGPIOpin()` -functions for the GPIO restrictions enforced by this library by default. - -The easiest and safest method is to test the object returned at runtime, to see if -it is valid. For example: - -``` -#include <SoftwareSerial.h> - -#define MYPORT_TX 12 -#define MYPORT_RX 13 - -SoftwareSerial myPort; - -[...] - -Serial.begin(115200); // Standard hardware serial port - -myPort.begin(38400, SWSERIAL_8N1, MYPORT_RX, MYPORT_TX, false); -if (!myPort) { // If the object did not initialize, then its configuration is invalid - Serial.println("Invalid SoftwareSerial pin configuration, check config"); - while (1) { // Don't continue with invalid configuration - delay (1000); - } -} - -[...] -``` - -## Using and updating EspSoftwareSerial in the esp8266com/esp8266 Arduino build environment - -EspSoftwareSerial is both part of the BSP download for ESP8266 in Arduino, -and it is set up as a Git submodule in the esp8266 source tree, -specifically in `.../esp8266/libraries/SoftwareSerial` when using a Github -repository clone in your Arduino sketchbook hardware directory. -This supersedes any version of EspSoftwareSerial installed for instance via -the Arduino library manager, it is not required to install EspSoftwareSerial -for the ESP8266 separately at all, but doing so has ill effect. - -The responsible maintainer of the esp8266 repository has kindly shared the -following command line instructions to use, if one wishes to manually -update EspSoftwareSerial to a newer release than pulled in via the ESP8266 Arduino BSP: - -To update esp8266/arduino SoftwareSerial submodule to lastest master: - -Clean it (optional): -```shell -$ rm -rf libraries/SoftwareSerial -$ git submodule update --init -``` -Now update it: -```shell -$ cd libraries/SoftwareSerial -$ git checkout master -$ git pull -``` diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/SoftwareSerial.cpp b/ampel-firmware/src/lib/EspSoftwareSerial/SoftwareSerial.cpp deleted file mode 100644 index 2acb55c958cf23fae3f6ec314a5ecc8cfa3c6bfa..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/SoftwareSerial.cpp +++ /dev/null @@ -1,612 +0,0 @@ -/* - -SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32. -Copyright (c) 2015-2016 Peter Lerup. All rights reserved. -Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - -*/ - -#include "SoftwareSerial.h" -#include <Arduino.h> - -#ifndef ESP32 -uint32_t SoftwareSerial::m_savedPS = 0; -#else -portMUX_TYPE SoftwareSerial::m_interruptsMux = portMUX_INITIALIZER_UNLOCKED; -#endif - -inline void IRAM_ATTR SoftwareSerial::disableInterrupts() -{ -#ifndef ESP32 - m_savedPS = xt_rsil(15); -#else - taskENTER_CRITICAL(&m_interruptsMux); -#endif -} - -inline void IRAM_ATTR SoftwareSerial::restoreInterrupts() -{ -#ifndef ESP32 - xt_wsr_ps(m_savedPS); -#else - taskEXIT_CRITICAL(&m_interruptsMux); -#endif -} - -constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast<uint8_t>(0); - -SoftwareSerial::SoftwareSerial() { - m_isrOverflow = false; - m_rxGPIOPullupEnabled = true; -} - -SoftwareSerial::SoftwareSerial(int8_t rxPin, int8_t txPin, bool invert) -{ - m_isrOverflow = false; - m_rxGPIOPullupEnabled = true; - m_rxPin = rxPin; - m_txPin = txPin; - m_invert = invert; -} - -SoftwareSerial::~SoftwareSerial() { - end(); -} - -bool SoftwareSerial::isValidGPIOpin(int8_t pin) { -#if defined(ESP8266) - return (pin >= 0 && pin <= 16) && !isFlashInterfacePin(pin); -#elif defined(ESP32) - // Remove the strapping pins as defined in the datasheets, they affect bootup and other critical operations - // Remmove the flash memory pins on related devices, since using these causes memory access issues. -#ifdef CONFIG_IDF_TARGET_ESP32 - // Datasheet https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf, - // Pinout https://docs.espressif.com/projects/esp-idf/en/latest/esp32/_images/esp32-devkitC-v4-pinout.jpg - return (pin == 1) || (pin >= 3 && pin <= 5) || - (pin >= 12 && pin <= 15) || - (!psramFound() && pin >= 16 && pin <= 17) || - (pin >= 18 && pin <= 19) || - (pin >= 21 && pin <= 23) || (pin >= 25 && pin <= 27) || (pin >= 32 && pin <= 39); -#elif CONFIG_IDF_TARGET_ESP32S2 - // Datasheet https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf, - // Pinout https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/_images/esp32-s2_saola1-pinout.jpg - return (pin >= 1 && pin <= 21) || (pin >= 33 && pin <= 44); -#elif CONFIG_IDF_TARGET_ESP32C3 - // Datasheet https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf, - // Pinout https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/_images/esp32-c3-devkitm-1-v1-pinout.jpg - return (pin >= 0 && pin <= 1) || (pin >= 3 && pin <= 7) || (pin >= 18 && pin <= 21); -#else - return true; -#endif -#else - return true; -#endif -} - -bool SoftwareSerial::isValidRxGPIOpin(int8_t pin) { - return isValidGPIOpin(pin) -#if defined(ESP8266) - && (pin != 16) -#endif - ; -} - -bool SoftwareSerial::isValidTxGPIOpin(int8_t pin) { - return isValidGPIOpin(pin) -#if defined(ESP32) -#ifdef CONFIG_IDF_TARGET_ESP32 - && (pin < 34) -#elif CONFIG_IDF_TARGET_ESP32S2 - && (pin <= 45) -#elif CONFIG_IDF_TARGET_ESP32C3 - // no restrictions -#endif -#endif - ; -} - -bool SoftwareSerial::hasRxGPIOPullUp(int8_t pin) { -#if defined(ESP32) - return !(pin >= 34 && pin <= 39); -#else - (void)pin; - return true; -#endif -} - -void SoftwareSerial::setRxGPIOPullUp() { - if (m_rxValid) { - pinMode(m_rxPin, hasRxGPIOPullUp(m_rxPin) && m_rxGPIOPullupEnabled ? INPUT_PULLUP : INPUT); - } -} - -void SoftwareSerial::begin(uint32_t baud, SoftwareSerialConfig config, - int8_t rxPin, int8_t txPin, - bool invert, int bufCapacity, int isrBufCapacity) { - if (-1 != rxPin) m_rxPin = rxPin; - if (-1 != txPin) m_txPin = txPin; - m_oneWire = (m_rxPin == m_txPin); - m_invert = invert; - m_dataBits = 5 + (config & 07); - m_parityMode = static_cast<SoftwareSerialParity>(config & 070); - m_stopBits = 1 + ((config & 0300) ? 1 : 0); - m_pduBits = m_dataBits + static_cast<bool>(m_parityMode) + m_stopBits; - m_bitCycles = (ESP.getCpuFreqMHz() * 1000000UL + baud / 2) / baud; - m_intTxEnabled = true; - if (isValidRxGPIOpin(m_rxPin)) { - m_buffer.reset(new circular_queue<uint8_t>((bufCapacity > 0) ? bufCapacity : 64)); - if (m_parityMode) - { - m_parityBuffer.reset(new circular_queue<uint8_t>((m_buffer->capacity() + 7) / 8)); - m_parityInPos = m_parityOutPos = 1; - } - m_isrBuffer.reset(new circular_queue<uint32_t, SoftwareSerial*>((isrBufCapacity > 0) ? - isrBufCapacity : m_buffer->capacity() * (2 + m_dataBits + static_cast<bool>(m_parityMode)))); - if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) { - m_rxValid = true; - setRxGPIOPullUp(); - } - } - if (isValidTxGPIOpin(m_txPin)) { - m_txValid = true; - if (!m_oneWire) { - pinMode(m_txPin, OUTPUT); - digitalWrite(m_txPin, !m_invert); - } - } - if (!m_rxEnabled) { enableRx(true); } -} - -void SoftwareSerial::end() -{ - enableRx(false); - m_txValid = false; - if (m_buffer) { - m_buffer.reset(); - } - m_parityBuffer.reset(); - if (m_isrBuffer) { - m_isrBuffer.reset(); - } -} - -uint32_t SoftwareSerial::baudRate() { - return ESP.getCpuFreqMHz() * 1000000UL / m_bitCycles; -} - -void SoftwareSerial::setTransmitEnablePin(int8_t txEnablePin) { - if (isValidTxGPIOpin(txEnablePin)) { - m_txEnableValid = true; - m_txEnablePin = txEnablePin; - pinMode(m_txEnablePin, OUTPUT); - digitalWrite(m_txEnablePin, LOW); - } - else { - m_txEnableValid = false; - } -} - -void SoftwareSerial::enableIntTx(bool on) { - m_intTxEnabled = on; -} - -void SoftwareSerial::enableRxGPIOPullup(bool on) { - m_rxGPIOPullupEnabled = on; - setRxGPIOPullUp(); -} - -void SoftwareSerial::enableTx(bool on) { - if (m_txValid && m_oneWire) { - if (on) { - enableRx(false); - pinMode(m_txPin, OUTPUT); - digitalWrite(m_txPin, !m_invert); - } - else { - setRxGPIOPullUp(); - enableRx(true); - } - } -} - -void SoftwareSerial::enableRx(bool on) { - if (m_rxValid) { - if (on) { - m_rxLastBit = m_pduBits - 1; - // Init to stop bit level and current cycle - m_isrLastCycle = (ESP.getCycleCount() | 1) ^ m_invert; - if (m_bitCycles >= (ESP.getCpuFreqMHz() * 1000000UL) / 74880UL) - attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitISR), this, CHANGE); - else - attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitSyncISR), this, m_invert ? RISING : FALLING); - } - else { - detachInterrupt(digitalPinToInterrupt(m_rxPin)); - } - m_rxEnabled = on; - } -} - -int SoftwareSerial::read() { - if (!m_rxValid) { return -1; } - if (!m_buffer->available()) { - rxBits(); - if (!m_buffer->available()) { return -1; } - } - auto val = m_buffer->pop(); - if (m_parityBuffer) - { - m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos; - m_parityOutPos <<= 1; - if (!m_parityOutPos) - { - m_parityOutPos = 1; - m_parityBuffer->pop(); - } - } - return val; -} - -int SoftwareSerial::read(uint8_t* buffer, size_t size) { - if (!m_rxValid) { return 0; } - int avail; - if (0 == (avail = m_buffer->pop_n(buffer, size))) { - rxBits(); - avail = m_buffer->pop_n(buffer, size); - } - if (!avail) return 0; - if (m_parityBuffer) { - uint32_t parityBits = avail; - while (m_parityOutPos >>= 1) ++parityBits; - m_parityOutPos = (1 << (parityBits % 8)); - m_parityBuffer->pop_n(nullptr, parityBits / 8); - } - return avail; -} - -size_t SoftwareSerial::readBytes(uint8_t* buffer, size_t size) { - if (!m_rxValid || !size) { return 0; } - size_t count = 0; - auto start = millis(); - do { - auto readCnt = read(&buffer[count], size - count); - count += readCnt; - if (count >= size) break; - if (readCnt) start = millis(); - else optimistic_yield(1000UL); - } while (millis() - start < _timeout); - return count; -} - -int SoftwareSerial::available() { - if (!m_rxValid) { return 0; } - rxBits(); - int avail = m_buffer->available(); - if (!avail) { - optimistic_yield(10000UL); - } - return avail; -} - -void IRAM_ATTR SoftwareSerial::preciseDelay(bool sync) { - if (!sync) - { - // Reenable interrupts while delaying to avoid other tasks piling up - if (!m_intTxEnabled) { restoreInterrupts(); } - const auto expired = ESP.getCycleCount() - m_periodStart; - const int32_t remaining = m_periodDuration - expired; - const int32_t ms = remaining > 0 ? remaining / 1000L / static_cast<int32_t>(ESP.getCpuFreqMHz()) : 0; - if (ms > 0) - { - delay(ms); - } - else - { - optimistic_yield(10000UL); - } - } - while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) {} - // Disable interrupts again if applicable - if (!sync && !m_intTxEnabled) { disableInterrupts(); } - m_periodDuration = 0; - m_periodStart = ESP.getCycleCount(); -} - -void IRAM_ATTR SoftwareSerial::writePeriod( - uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) { - preciseDelay(true); - if (dutyCycle) - { - digitalWrite(m_txPin, HIGH); - m_periodDuration += dutyCycle; - if (offCycle || (withStopBit && !m_invert)) preciseDelay(!withStopBit || m_invert); - } - if (offCycle) - { - digitalWrite(m_txPin, LOW); - m_periodDuration += offCycle; - if (withStopBit && m_invert) preciseDelay(false); - } -} - -size_t SoftwareSerial::write(uint8_t byte) { - return write(&byte, 1); -} - -size_t SoftwareSerial::write(uint8_t byte, SoftwareSerialParity parity) { - return write(&byte, 1, parity); -} - -size_t SoftwareSerial::write(const uint8_t* buffer, size_t size) { - return write(buffer, size, m_parityMode); -} - -size_t IRAM_ATTR SoftwareSerial::write(const uint8_t* buffer, size_t size, SoftwareSerialParity parity) { - if (m_rxValid) { rxBits(); } - if (!m_txValid) { return -1; } - - if (m_txEnableValid) { - digitalWrite(m_txEnablePin, HIGH); - } - // Stop bit: if inverted, LOW, otherwise HIGH - bool b = !m_invert; - uint32_t dutyCycle = 0; - uint32_t offCycle = 0; - if (!m_intTxEnabled) { - // Disable interrupts in order to get a clean transmit timing - disableInterrupts(); - } - const uint32_t dataMask = ((1UL << m_dataBits) - 1); - bool withStopBit = true; - m_periodDuration = 0; - m_periodStart = ESP.getCycleCount(); - for (size_t cnt = 0; cnt < size; ++cnt) { - uint8_t byte = pgm_read_byte(buffer + cnt) & dataMask; - // push LSB start-data-parity-stop bit pattern into uint32_t - // Stop bits: HIGH - uint32_t word = ~0UL; - // inverted parity bit, performance tweak for xor all-bits-set word - if (parity && m_parityMode) - { - uint32_t parityBit; - switch (parity) - { - case SWSERIAL_PARITY_EVEN: - // from inverted, so use odd parity - parityBit = byte; - parityBit ^= parityBit >> 4; - parityBit &= 0xf; - parityBit = (0x9669 >> parityBit) & 1; - break; - case SWSERIAL_PARITY_ODD: - // from inverted, so use even parity - parityBit = byte; - parityBit ^= parityBit >> 4; - parityBit &= 0xf; - parityBit = (0x6996 >> parityBit) & 1; - break; - case SWSERIAL_PARITY_MARK: - parityBit = 0; - break; - case SWSERIAL_PARITY_SPACE: - // suppresses warning parityBit uninitialized - default: - parityBit = 1; - break; - } - word ^= parityBit; - } - word <<= m_dataBits; - word |= byte; - // Start bit: LOW - word <<= 1; - if (m_invert) word = ~word; - for (int i = 0; i <= m_pduBits; ++i) { - bool pb = b; - b = word & (1UL << i); - if (!pb && b) { - writePeriod(dutyCycle, offCycle, withStopBit); - withStopBit = false; - dutyCycle = offCycle = 0; - } - if (b) { - dutyCycle += m_bitCycles; - } - else { - offCycle += m_bitCycles; - } - } - withStopBit = true; - } - writePeriod(dutyCycle, offCycle, true); - if (!m_intTxEnabled) { - // restore the interrupt state if applicable - restoreInterrupts(); - } - if (m_txEnableValid) { - digitalWrite(m_txEnablePin, LOW); - } - return size; -} - -void SoftwareSerial::flush() { - if (!m_rxValid) { return; } - m_buffer->flush(); - if (m_parityBuffer) - { - m_parityInPos = m_parityOutPos = 1; - m_parityBuffer->flush(); - } -} - -bool SoftwareSerial::overflow() { - bool res = m_overflow; - m_overflow = false; - return res; -} - -int SoftwareSerial::peek() { - if (!m_rxValid) { return -1; } - if (!m_buffer->available()) { - rxBits(); - if (!m_buffer->available()) return -1; - } - auto val = m_buffer->peek(); - if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos; - return val; -} - -void SoftwareSerial::rxBits() { -#ifdef ESP8266 - if (m_isrOverflow.load()) { - m_overflow = true; - m_isrOverflow.store(false); - } -#else - if (m_isrOverflow.exchange(false)) { - m_overflow = true; - } -#endif - - m_isrBuffer->for_each(m_isrBufferForEachDel); - - // A stop bit can go undetected if leading data bits are at same level - // and there was also no next start bit yet, so one word may be pending. - // Check that there was no new ISR data received in the meantime, inserting an - // extraneous stop level bit out of sequence breaks rx. - if (m_rxLastBit < m_pduBits - 1) { - const uint32_t detectionCycles = (m_pduBits - 1 - m_rxLastBit) * m_bitCycles; - if (!m_isrBuffer->available() && ESP.getCycleCount() - m_isrLastCycle > detectionCycles) { - // Produce faux stop bit level, prevents start bit maldetection - // cycle's LSB is repurposed for the level bit - rxBits(((m_isrLastCycle + detectionCycles) | 1) ^ m_invert); - } - } -} - -void SoftwareSerial::rxBits(const uint32_t isrCycle) { - const bool level = (m_isrLastCycle & 1) ^ m_invert; - - // error introduced by edge value in LSB of isrCycle is negligible - uint32_t cycles = isrCycle - m_isrLastCycle; - m_isrLastCycle = isrCycle; - - uint32_t bits = cycles / m_bitCycles; - if (cycles % m_bitCycles > (m_bitCycles >> 1)) ++bits; - while (bits > 0) { - // start bit detection - if (m_rxLastBit >= (m_pduBits - 1)) { - // leading edge of start bit? - if (level) break; - m_rxLastBit = -1; - --bits; - continue; - } - // data bits - if (m_rxLastBit < (m_dataBits - 1)) { - uint8_t dataBits = min(bits, static_cast<uint32_t>(m_dataBits - 1 - m_rxLastBit)); - m_rxLastBit += dataBits; - bits -= dataBits; - m_rxCurByte >>= dataBits; - if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); } - continue; - } - // parity bit - if (m_parityMode && m_rxLastBit == (m_dataBits - 1)) { - ++m_rxLastBit; - --bits; - m_rxCurParity = level; - continue; - } - // stop bits - // Store the received value in the buffer unless we have an overflow - // if not high stop bit level, discard word - if (bits >= static_cast<uint32_t>(m_pduBits - 1 - m_rxLastBit) && level) { - m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits); - if (!m_buffer->push(m_rxCurByte)) { - m_overflow = true; - } - else { - if (m_parityBuffer) - { - if (m_rxCurParity) { - m_parityBuffer->pushpeek() |= m_parityInPos; - } - else { - m_parityBuffer->pushpeek() &= ~m_parityInPos; - } - m_parityInPos <<= 1; - if (!m_parityInPos) - { - m_parityBuffer->push(); - m_parityInPos = 1; - } - } - } - } - m_rxLastBit = m_pduBits - 1; - // reset to 0 is important for masked bit logic - m_rxCurByte = 0; - m_rxCurParity = false; - break; - } -} - -void IRAM_ATTR SoftwareSerial::rxBitISR(SoftwareSerial* self) { - uint32_t curCycle = ESP.getCycleCount(); - bool level = digitalRead(self->m_rxPin); - - // Store level and cycle in the buffer unless we have an overflow - // cycle's LSB is repurposed for the level bit - if (!self->m_isrBuffer->push((curCycle | 1U) ^ !level)) self->m_isrOverflow.store(true); -} - -void IRAM_ATTR SoftwareSerial::rxBitSyncISR(SoftwareSerial* self) { - uint32_t start = ESP.getCycleCount(); - uint32_t wait = self->m_bitCycles - 172U; - - bool level = self->m_invert; - // Store level and cycle in the buffer unless we have an overflow - // cycle's LSB is repurposed for the level bit - if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true); - - for (uint32_t i = 0; i < self->m_pduBits; ++i) { - while (ESP.getCycleCount() - start < wait) {}; - wait += self->m_bitCycles; - - // Store level and cycle in the buffer unless we have an overflow - // cycle's LSB is repurposed for the level bit - if (digitalRead(self->m_rxPin) != level) - { - if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true); - level = !level; - } - } -} - -void SoftwareSerial::onReceive(Delegate<void(int available), void*> handler) { - receiveHandler = handler; -} - -void SoftwareSerial::perform_work() { - if (!m_rxValid) { return; } - rxBits(); - if (receiveHandler) { - int avail = m_buffer->available(); - if (avail) { receiveHandler(avail); } - } -} diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/SoftwareSerial.h b/ampel-firmware/src/lib/EspSoftwareSerial/SoftwareSerial.h deleted file mode 100644 index 6142a6cf8e12a41137c58ad801cdf47076638fe7..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/SoftwareSerial.h +++ /dev/null @@ -1,281 +0,0 @@ -/* -SoftwareSerial.h - -SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32. -Copyright (c) 2015-2016 Peter Lerup. All rights reserved. -Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - -*/ - -#ifndef __SoftwareSerial_h -#define __SoftwareSerial_h - -#include "circular_queue/circular_queue.h" -#include <Stream.h> - -enum SoftwareSerialParity : uint8_t { - SWSERIAL_PARITY_NONE = 000, - SWSERIAL_PARITY_EVEN = 020, - SWSERIAL_PARITY_ODD = 030, - SWSERIAL_PARITY_MARK = 040, - SWSERIAL_PARITY_SPACE = 070, -}; - -enum SoftwareSerialConfig { - SWSERIAL_5N1 = SWSERIAL_PARITY_NONE, - SWSERIAL_6N1, - SWSERIAL_7N1, - SWSERIAL_8N1, - SWSERIAL_5E1 = SWSERIAL_PARITY_EVEN, - SWSERIAL_6E1, - SWSERIAL_7E1, - SWSERIAL_8E1, - SWSERIAL_5O1 = SWSERIAL_PARITY_ODD, - SWSERIAL_6O1, - SWSERIAL_7O1, - SWSERIAL_8O1, - SWSERIAL_5M1 = SWSERIAL_PARITY_MARK, - SWSERIAL_6M1, - SWSERIAL_7M1, - SWSERIAL_8M1, - SWSERIAL_5S1 = SWSERIAL_PARITY_SPACE, - SWSERIAL_6S1, - SWSERIAL_7S1, - SWSERIAL_8S1, - SWSERIAL_5N2 = 0200 | SWSERIAL_PARITY_NONE, - SWSERIAL_6N2, - SWSERIAL_7N2, - SWSERIAL_8N2, - SWSERIAL_5E2 = 0200 | SWSERIAL_PARITY_EVEN, - SWSERIAL_6E2, - SWSERIAL_7E2, - SWSERIAL_8E2, - SWSERIAL_5O2 = 0200 | SWSERIAL_PARITY_ODD, - SWSERIAL_6O2, - SWSERIAL_7O2, - SWSERIAL_8O2, - SWSERIAL_5M2 = 0200 | SWSERIAL_PARITY_MARK, - SWSERIAL_6M2, - SWSERIAL_7M2, - SWSERIAL_8M2, - SWSERIAL_5S2 = 0200 | SWSERIAL_PARITY_SPACE, - SWSERIAL_6S2, - SWSERIAL_7S2, - SWSERIAL_8S2, -}; - -/// This class is compatible with the corresponding AVR one, however, -/// the constructor takes no arguments, for compatibility with the -/// HardwareSerial class. -/// Instead, the begin() function handles pin assignments and logic inversion. -/// It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer. -/// Bitrates up to at least 115200 can be used. -class SoftwareSerial : public Stream { -public: - SoftwareSerial(); - /// Ctor to set defaults for pins. - /// @param rxPin the GPIO pin used for RX - /// @param txPin -1 for onewire protocol, GPIO pin used for twowire TX - SoftwareSerial(int8_t rxPin, int8_t txPin = -1, bool invert = false); - SoftwareSerial(const SoftwareSerial&) = delete; - SoftwareSerial& operator= (const SoftwareSerial&) = delete; - virtual ~SoftwareSerial(); - /// Configure the SoftwareSerial object for use. - /// @param baud the TX/RX bitrate - /// @param config sets databits, parity, and stop bit count - /// @param rxPin -1 or default: either no RX pin, or keeps the rxPin set in the ctor - /// @param txPin -1 or default: either no TX pin (onewire), or keeps the txPin set in the ctor - /// @param invert true: uses invert line level logic - /// @param bufCapacity the capacity for the received bytes buffer - /// @param isrBufCapacity 0: derived from bufCapacity. The capacity of the internal asynchronous - /// bit receive buffer, a suggested size is bufCapacity times the sum of - /// start, data, parity and stop bit count. - void begin(uint32_t baud, SoftwareSerialConfig config, - int8_t rxPin, int8_t txPin, bool invert, - int bufCapacity = 64, int isrBufCapacity = 0); - void begin(uint32_t baud, SoftwareSerialConfig config, - int8_t rxPin, int8_t txPin) { - begin(baud, config, rxPin, txPin, m_invert); - } - void begin(uint32_t baud, SoftwareSerialConfig config, - int8_t rxPin) { - begin(baud, config, rxPin, m_txPin, m_invert); - } - void begin(uint32_t baud, SoftwareSerialConfig config = SWSERIAL_8N1) { - begin(baud, config, m_rxPin, m_txPin, m_invert); - } - - uint32_t baudRate(); - /// Transmit control pin. - void setTransmitEnablePin(int8_t txEnablePin); - /// Enable (default) or disable interrupts during tx. - void enableIntTx(bool on); - /// Enable (default) or disable internal rx GPIO pullup. - void enableRxGPIOPullup(bool on); - - bool overflow(); - - int available() override; -#if defined(ESP8266) - int availableForWrite() override { -#else - int availableForWrite() { -#endif - if (!m_txValid) return 0; - return 1; - } - int peek() override; - int read() override; - /// @returns The verbatim parity bit associated with the last successful read() or peek() call - bool readParity() - { - return m_lastReadParity; - } - /// @returns The calculated bit for even parity of the parameter byte - static bool parityEven(uint8_t byte) { - byte ^= byte >> 4; - byte &= 0xf; - return (0x6996 >> byte) & 1; - } - /// @returns The calculated bit for odd parity of the parameter byte - static bool parityOdd(uint8_t byte) { - byte ^= byte >> 4; - byte &= 0xf; - return (0x9669 >> byte) & 1; - } - /// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout - int read(uint8_t* buffer, size_t size) -#if defined(ESP8266) - override -#endif - ; - /// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout - int read(char* buffer, size_t size) { - return read(reinterpret_cast<uint8_t*>(buffer), size); - } - /// @returns The number of bytes read into buffer, up to size. Times out if the limit set through - /// Stream::setTimeout() is reached. - size_t readBytes(uint8_t* buffer, size_t size) override; - /// @returns The number of bytes read into buffer, up to size. Times out if the limit set through - /// Stream::setTimeout() is reached. - size_t readBytes(char* buffer, size_t size) override { - return readBytes(reinterpret_cast<uint8_t*>(buffer), size); - } - void flush() override; - size_t write(uint8_t byte) override; - size_t write(uint8_t byte, SoftwareSerialParity parity); - size_t write(const uint8_t* buffer, size_t size) override; - size_t write(const char* buffer, size_t size) { - return write(reinterpret_cast<const uint8_t*>(buffer), size); - } - size_t write(const uint8_t* buffer, size_t size, SoftwareSerialParity parity); - size_t write(const char* buffer, size_t size, SoftwareSerialParity parity) { - return write(reinterpret_cast<const uint8_t*>(buffer), size, parity); - } - operator bool() const { - return (-1 == m_rxPin || m_rxValid) && (-1 == m_txPin || m_txValid) && !(-1 == m_rxPin && m_oneWire); - } - - /// Disable or enable interrupts on the rx pin. - void enableRx(bool on); - /// One wire control. - void enableTx(bool on); - - // AVR compatibility methods. - bool listen() { enableRx(true); return true; } - void end(); - bool isListening() { return m_rxEnabled; } - bool stopListening() { enableRx(false); return true; } - - /// Set an event handler for received data. - void onReceive(Delegate<void(int available), void*> handler); - - /// Run the internal processing and event engine. Can be iteratively called - /// from loop, or otherwise scheduled. - void perform_work(); - - using Print::write; - -private: - // If sync is false, it's legal to exceed the deadline, for instance, - // by enabling interrupts. - void preciseDelay(bool sync); - // If withStopBit is set, either cycle contains a stop bit. - // If dutyCycle == 0, the level is not forced to HIGH. - // If offCycle == 0, the level remains unchanged from dutyCycle. - void writePeriod( - uint32_t dutyCycle, uint32_t offCycle, bool withStopBit); - bool isValidGPIOpin(int8_t pin); - bool isValidRxGPIOpin(int8_t pin); - bool isValidTxGPIOpin(int8_t pin); - // result is only defined for a valid Rx GPIO pin - bool hasRxGPIOPullUp(int8_t pin); - // safely set the pin mode for the Rx GPIO pin - void setRxGPIOPullUp(); - /* check m_rxValid that calling is safe */ - void rxBits(); - void rxBits(const uint32_t isrCycle); - static void disableInterrupts(); - static void restoreInterrupts(); - - static void rxBitISR(SoftwareSerial* self); - static void rxBitSyncISR(SoftwareSerial* self); - - // Member variables - int8_t m_rxPin = -1; - int8_t m_txPin = -1; - int8_t m_txEnablePin = -1; - uint8_t m_dataBits; - bool m_oneWire; - bool m_rxValid = false; - bool m_rxEnabled = false; - bool m_txValid = false; - bool m_txEnableValid = false; - bool m_invert; - /// PDU bits include data, parity and stop bits; the start bit is not counted. - uint8_t m_pduBits; - bool m_intTxEnabled; - bool m_rxGPIOPullupEnabled; - SoftwareSerialParity m_parityMode; - uint8_t m_stopBits; - bool m_lastReadParity; - bool m_overflow = false; - uint32_t m_bitCycles; - uint8_t m_parityInPos; - uint8_t m_parityOutPos; - int8_t m_rxLastBit; // 0 thru (m_pduBits - m_stopBits - 1): data/parity bits. -1: start bit. (m_pduBits - 1): stop bit. - uint8_t m_rxCurByte = 0; - std::unique_ptr<circular_queue<uint8_t> > m_buffer; - std::unique_ptr<circular_queue<uint8_t> > m_parityBuffer; - uint32_t m_periodStart; - uint32_t m_periodDuration; -#ifndef ESP32 - static uint32_t m_savedPS; -#else - static portMUX_TYPE m_interruptsMux; -#endif - // the ISR stores the relative bit times in the buffer. The inversion corrected level is used as sign bit (2's complement): - // 1 = positive including 0, 0 = negative. - std::unique_ptr<circular_queue<uint32_t, SoftwareSerial*> > m_isrBuffer; - const Delegate<void(uint32_t&&), SoftwareSerial*> m_isrBufferForEachDel = { [](SoftwareSerial* self, uint32_t&& isrCycle) { self->rxBits(isrCycle); }, this }; - std::atomic<bool> m_isrOverflow; - uint32_t m_isrLastCycle; - bool m_rxCurParity = false; - Delegate<void(int available), void*> receiveHandler; -}; - -#endif // __SoftwareSerial_h diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/Delegate.h b/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/Delegate.h deleted file mode 100644 index 193ca8a8fe1d00f48c9085cc79825f15822998f0..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/Delegate.h +++ /dev/null @@ -1,2130 +0,0 @@ -/* -Delegate.h - An efficient interchangeable C function ptr and C++ std::function delegate -Copyright (c) 2019 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ - -#ifndef __Delegate_h -#define __Delegate_h - -#if defined(ESP8266) -#include <c_types.h> -#elif defined(ESP32) -#include <esp_attr.h> -#else -#define IRAM_ATTR -#endif - -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) -#include <functional> -#include <cstddef> -#else -#include "circular_queue/ghostl.h" -#endif - -namespace -{ - - template<typename R, typename... P> - R IRAM_ATTR vPtrToFunPtrExec(void* fn, P... args) - { - using target_type = R(P...); - return reinterpret_cast<target_type*>(fn)(std::forward<P...>(args...)); - } - -} - -namespace delegate -{ - namespace detail - { - -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - template<typename A, typename R, typename... P> - class DelegatePImpl { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A, P...); - using FunVPPtr = R(*)(void*, P...); - using FunctionType = std::function<target_type>; - public: - DelegatePImpl() - { - kind = FP; - fn = nullptr; - } - - DelegatePImpl(std::nullptr_t) - { - kind = FP; - fn = nullptr; - } - - ~DelegatePImpl() - { - if (FUNC == kind) - functional.~FunctionType(); - else if (FPA == kind) - obj.~A(); - } - - DelegatePImpl(const DelegatePImpl& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(del.functional); - } - else if (FPA == del.kind) - { - fnA = del.fnA; - new (&obj) A(del.obj); - } - else - { - fn = del.fn; - } - } - - DelegatePImpl(DelegatePImpl&& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(std::move(del.functional)); - } - else if (FPA == del.kind) - { - fnA = del.fnA; - new (&obj) A(std::move(del.obj)); - } - else - { - fn = del.fn; - } - } - - DelegatePImpl(FunAPtr fnA, const A& obj) - { - kind = FPA; - DelegatePImpl::fnA = fnA; - new (&this->obj) A(obj); - } - - DelegatePImpl(FunAPtr fnA, A&& obj) - { - kind = FPA; - DelegatePImpl::fnA = fnA; - new (&this->obj) A(std::move(obj)); - } - - DelegatePImpl(FunPtr fn) - { - kind = FP; - DelegatePImpl::fn = fn; - } - - template<typename F> DelegatePImpl(F functional) - { - kind = FUNC; - new (&this->functional) FunctionType(std::forward<F>(functional)); - } - - DelegatePImpl& operator=(const DelegatePImpl& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - if (FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - else if (FPA == del.kind) - { - new (&obj) A; - } - kind = del.kind; - } - if (FUNC == del.kind) - { - functional = del.functional; - } - else if (FPA == del.kind) - { - fnA = del.fnA; - obj = del.obj; - } - else - { - fn = del.fn; - } - return *this; - } - - DelegatePImpl& operator=(DelegatePImpl&& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - if (FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - else if (FPA == del.kind) - { - new (&obj) A; - } - kind = del.kind; - } - if (FUNC == del.kind) - { - functional = std::move(del.functional); - } - else if (FPA == del.kind) - { - fnA = del.fnA; - obj = std::move(del.obj); - } - else - { - fn = del.fn; - } - return *this; - } - - DelegatePImpl& operator=(FunPtr fn) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - kind = FP; - this->fn = fn; - return *this; - } - - DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - kind = FP; - fn = nullptr; - return *this; - } - - operator bool() const - { - if (FP == kind) - { - return fn; - } - else if (FPA == kind) - { - return fnA; - } - else - { - return functional ? true : false; - } - } - - static R IRAM_ATTR vPtrToFunAPtrExec(void* self, P... args) - { - return static_cast<DelegatePImpl*>(self)->fnA( - static_cast<DelegatePImpl*>(self)->obj, - std::forward<P...>(args...)); - }; - - operator FunVPPtr() const - { - if (FP == kind) - { - return vPtrToFunPtrExec<R, P...>; - } - else if (FPA == kind) - { - return vPtrToFunAPtrExec; - } - else - { - return [](void* self, P... args) -> R - { - return static_cast<DelegatePImpl*>(self)->functional(std::forward<P...>(args...)); - }; - } - } - - void* arg() const - { - if (FP == kind) - { - return reinterpret_cast<void*>(fn); - } - else - { - return const_cast<DelegatePImpl*>(this); - } - } - - operator FunctionType() const - { - if (FP == kind) - { - return fn; - } - else if (FPA == kind) - { - return [this](P... args) { return fnA(obj, std::forward<P...>(args...)); }; - } - else - { - return functional; - } - } - - R IRAM_ATTR operator()(P... args) const - { - if (FP == kind) - { - return fn(std::forward<P...>(args...)); - } - else if (FPA == kind) - { - return fnA(obj, std::forward<P...>(args...)); - } - else - { - return functional(std::forward<P...>(args...)); - } - } - - protected: - union { - FunctionType functional; - FunPtr fn; - struct { - FunAPtr fnA; - A obj; - }; - }; - enum { FUNC, FP, FPA } kind; - }; -#else - template<typename A, typename R, typename... P> - class DelegatePImpl { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A, P...); - using FunVPPtr = R(*)(void*, P...); - public: - DelegatePImpl() - { - kind = FP; - fn = nullptr; - } - - DelegatePImpl(std::nullptr_t) - { - kind = FP; - fn = nullptr; - } - - DelegatePImpl(const DelegatePImpl& del) - { - kind = del.kind; - if (FPA == del.kind) - { - fnA = del.fnA; - obj = del.obj; - } - else - { - fn = del.fn; - } - } - - DelegatePImpl(DelegatePImpl&& del) - { - kind = del.kind; - if (FPA == del.kind) - { - fnA = del.fnA; - obj = std::move(del.obj); - } - else - { - fn = del.fn; - } - } - - DelegatePImpl(FunAPtr fnA, const A& obj) - { - kind = FPA; - DelegatePImpl::fnA = fnA; - this->obj = obj; - } - - DelegatePImpl(FunAPtr fnA, A&& obj) - { - kind = FPA; - DelegatePImpl::fnA = fnA; - this->obj = std::move(obj); - } - - DelegatePImpl(FunPtr fn) - { - kind = FP; - DelegatePImpl::fn = fn; - } - - template<typename F> DelegatePImpl(F functional) - { - kind = FP; - fn = std::forward<F>(functional); - } - - DelegatePImpl& operator=(const DelegatePImpl& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FPA == kind) - { - obj = {}; - } - kind = del.kind; - } - if (FPA == del.kind) - { - fnA = del.fnA; - obj = del.obj; - } - else - { - fn = del.fn; - } - return *this; - } - - DelegatePImpl& operator=(DelegatePImpl&& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FPA == kind) - { - obj = {}; - } - kind = del.kind; - } - if (FPA == del.kind) - { - fnA = del.fnA; - obj = std::move(del.obj); - } - else - { - fn = del.fn; - } - return *this; - } - - DelegatePImpl& operator=(FunPtr fn) - { - if (FPA == kind) - { - obj = {}; - } - kind = FP; - this->fn = fn; - return *this; - } - - DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) - { - if (FPA == kind) - { - obj = {}; - } - kind = FP; - fn = nullptr; - return *this; - } - - operator bool() const - { - if (FP == kind) - { - return fn; - } - else - { - return fnA; - } - } - - static R IRAM_ATTR vPtrToFunAPtrExec(void* self, P... args) - { - return static_cast<DelegatePImpl*>(self)->fnA( - static_cast<DelegatePImpl*>(self)->obj, - std::forward<P...>(args...)); - }; - - operator FunVPPtr() const - { - if (FP == kind) - { - return vPtrToFunPtrExec<R, P...>; - } - else - { - return vPtrToFunAPtrExec; - } - } - - void* arg() const - { - if (FP == kind) - { - return reinterpret_cast<void*>(fn); - } - else - { - return const_cast<DelegatePImpl*>(this); - } - } - - R IRAM_ATTR operator()(P... args) const - { - if (FP == kind) - { - return fn(std::forward<P...>(args...)); - } - else - { - return fnA(obj, std::forward<P...>(args...)); - } - } - - protected: - union { - FunPtr fn; - FunAPtr fnA; - }; - A obj; - enum { FP, FPA } kind; - }; -#endif - -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - template<typename R, typename... P> - class DelegatePImpl<void, R, P...> { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; - using FunctionType = std::function<target_type>; - using FunVPPtr = R(*)(void*, P...); - public: - DelegatePImpl() - { - kind = FP; - fn = nullptr; - } - - DelegatePImpl(std::nullptr_t) - { - kind = FP; - fn = nullptr; - } - - ~DelegatePImpl() - { - if (FUNC == kind) - functional.~FunctionType(); - } - - DelegatePImpl(const DelegatePImpl& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(del.functional); - } - else - { - fn = del.fn; - } - } - - DelegatePImpl(DelegatePImpl&& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(std::move(del.functional)); - } - else - { - fn = del.fn; - } - } - - DelegatePImpl(FunPtr fn) - { - kind = FP; - DelegatePImpl::fn = fn; - } - - template<typename F> DelegatePImpl(F functional) - { - kind = FUNC; - new (&this->functional) FunctionType(std::forward<F>(functional)); - } - - DelegatePImpl& operator=(const DelegatePImpl& del) - { - if (this == &del) return *this; - if (FUNC == kind && FUNC != del.kind) - { - functional.~FunctionType(); - } - else if (FUNC != kind && FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - kind = del.kind; - if (FUNC == del.kind) - { - functional = del.functional; - } - else - { - fn = del.fn; - } - return *this; - } - - DelegatePImpl& operator=(DelegatePImpl&& del) - { - if (this == &del) return *this; - if (FUNC == kind && FUNC != del.kind) - { - functional.~FunctionType(); - } - else if (FUNC != kind && FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - kind = del.kind; - if (FUNC == del.kind) - { - functional = std::move(del.functional); - } - else - { - fn = del.fn; - } - return *this; - } - - DelegatePImpl& operator=(FunPtr fn) - { - if (FUNC == kind) - { - functional.~FunctionType(); - kind = FP; - } - DelegatePImpl::fn = fn; - return *this; - } - - DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - kind = FP; - fn = nullptr; - return *this; - } - - operator bool() const - { - if (FP == kind) - { - return fn; - } - else - { - return functional ? true : false; - } - } - - operator FunVPPtr() const - { - if (FP == kind) - { - return vPtrToFunPtrExec<R, P...>; - } - else - { - return [](void* self, P... args) -> R - { - return static_cast<DelegatePImpl*>(self)->functional(std::forward<P...>(args...)); - }; - } - } - - void* arg() const - { - if (FP == kind) - { - return reinterpret_cast<void*>(fn); - } - else - { - return const_cast<DelegatePImpl*>(this); - } - } - - operator FunctionType() const - { - if (FP == kind) - { - return fn; - } - else - { - return functional; - } - } - - R IRAM_ATTR operator()(P... args) const - { - if (FP == kind) - { - return fn(std::forward<P...>(args...)); - } - else - { - return functional(std::forward<P...>(args...)); - } - } - - protected: - union { - FunctionType functional; - FunPtr fn; - }; - enum { FUNC, FP } kind; - }; -#else - template<typename R, typename... P> - class DelegatePImpl<void, R, P...> { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; - using FunVPPtr = R(*)(void*, P...); - public: - DelegatePImpl() - { - fn = nullptr; - } - - DelegatePImpl(std::nullptr_t) - { - fn = nullptr; - } - - DelegatePImpl(const DelegatePImpl& del) - { - fn = del.fn; - } - - DelegatePImpl(DelegatePImpl&& del) - { - fn = std::move(del.fn); - } - - DelegatePImpl(FunPtr fn) - { - DelegatePImpl::fn = fn; - } - - template<typename F> DelegatePImpl(F fn) - { - DelegatePImpl::fn = std::forward<F>(fn); - } - - DelegatePImpl& operator=(const DelegatePImpl& del) - { - if (this == &del) return *this; - fn = del.fn; - return *this; - } - - DelegatePImpl& operator=(DelegatePImpl&& del) - { - if (this == &del) return *this; - fn = std::move(del.fn); - return *this; - } - - DelegatePImpl& operator=(FunPtr fn) - { - DelegatePImpl::fn = fn; - return *this; - } - - DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) - { - fn = nullptr; - return *this; - } - - operator bool() const - { - return fn; - } - - operator FunVPPtr() const - { - return vPtrToFunPtrExec<R, P...>; - } - - void* arg() const - { - return reinterpret_cast<void*>(fn); - } - - R IRAM_ATTR operator()(P... args) const - { - return fn(std::forward<P...>(args...)); - } - - protected: - FunPtr fn; - }; -#endif - -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - template<typename A, typename R> - class DelegateImpl { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A); - using FunctionType = std::function<target_type>; - using FunVPPtr = R(*)(void*); - public: - DelegateImpl() - { - kind = FP; - fn = nullptr; - } - - DelegateImpl(std::nullptr_t) - { - kind = FP; - fn = nullptr; - } - - ~DelegateImpl() - { - if (FUNC == kind) - functional.~FunctionType(); - else if (FPA == kind) - obj.~A(); - } - - DelegateImpl(const DelegateImpl& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(del.functional); - } - else if (FPA == del.kind) - { - fnA = del.fnA; - new (&obj) A(del.obj); - } - else - { - fn = del.fn; - } - } - - DelegateImpl(DelegateImpl&& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(std::move(del.functional)); - } - else if (FPA == del.kind) - { - fnA = del.fnA; - new (&obj) A(std::move(del.obj)); - } - else - { - fn = del.fn; - } - } - - DelegateImpl(FunAPtr fnA, const A& obj) - { - kind = FPA; - DelegateImpl::fnA = fnA; - new (&this->obj) A(obj); - } - - DelegateImpl(FunAPtr fnA, A&& obj) - { - kind = FPA; - DelegateImpl::fnA = fnA; - new (&this->obj) A(std::move(obj)); - } - - DelegateImpl(FunPtr fn) - { - kind = FP; - DelegateImpl::fn = fn; - } - - template<typename F> DelegateImpl(F functional) - { - kind = FUNC; - new (&this->functional) FunctionType(std::forward<F>(functional)); - } - - DelegateImpl& operator=(const DelegateImpl& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - if (FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - else if (FPA == del.kind) - { - new (&obj) A; - } - kind = del.kind; - } - if (FUNC == del.kind) - { - functional = del.functional; - } - else if (FPA == del.kind) - { - fnA = del.fnA; - obj = del.obj; - } - else - { - fn = del.fn; - } - return *this; - } - - DelegateImpl& operator=(DelegateImpl&& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - if (FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - else if (FPA == del.kind) - { - new (&obj) A; - } - kind = del.kind; - } - if (FUNC == del.kind) - { - functional = std::move(del.functional); - } - else if (FPA == del.kind) - { - fnA = del.fnA; - obj = std::move(del.obj); - } - else - { - fn = del.fn; - } - return *this; - } - - DelegateImpl& operator=(FunPtr fn) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - kind = FP; - this->fn = fn; - return *this; - } - - DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - else if (FPA == kind) - { - obj.~A(); - } - kind = FP; - fn = nullptr; - return *this; - } - - operator bool() const - { - if (FP == kind) - { - return fn; - } - else if (FPA == kind) - { - return fnA; - } - else - { - return functional ? true : false; - } - } - - static R IRAM_ATTR vPtrToFunAPtrExec(void* self) - { - return static_cast<DelegateImpl*>(self)->fnA( - static_cast<DelegateImpl*>(self)->obj); - }; - - operator FunVPPtr() const - { - if (FP == kind) - { - return reinterpret_cast<FunVPPtr>(fn); - } - else if (FPA == kind) - { - return vPtrToFunAPtrExec; - } - else - { - return [](void* self) -> R - { - return static_cast<DelegateImpl*>(self)->functional(); - }; - } - } - - void* arg() const - { - if (FP == kind) - { - return nullptr; - } - else - { - return const_cast<DelegateImpl*>(this); - } - } - - operator FunctionType() const - { - if (FP == kind) - { - return fn; - } - else if (FPA == kind) - { - return [this]() { return fnA(obj); }; - } - else - { - return functional; - } - } - - R IRAM_ATTR operator()() const - { - if (FP == kind) - { - return fn(); - } - else if (FPA == kind) - { - return fnA(obj); - } - else - { - return functional(); - } - } - - protected: - union { - FunctionType functional; - FunPtr fn; - struct { - FunAPtr fnA; - A obj; - }; - }; - enum { FUNC, FP, FPA } kind; - }; -#else - template<typename A, typename R> - class DelegateImpl { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A); - using FunVPPtr = R(*)(void*); - public: - DelegateImpl() - { - kind = FP; - fn = nullptr; - } - - DelegateImpl(std::nullptr_t) - { - kind = FP; - fn = nullptr; - } - - DelegateImpl(const DelegateImpl& del) - { - kind = del.kind; - if (FPA == del.kind) - { - fnA = del.fnA; - obj = del.obj; - } - else - { - fn = del.fn; - } - } - - DelegateImpl(DelegateImpl&& del) - { - kind = del.kind; - if (FPA == del.kind) - { - fnA = del.fnA; - obj = std::move(del.obj); - } - else - { - fn = del.fn; - } - } - - DelegateImpl(FunAPtr fnA, const A& obj) - { - kind = FPA; - DelegateImpl::fnA = fnA; - this->obj = obj; - } - - DelegateImpl(FunAPtr fnA, A&& obj) - { - kind = FPA; - DelegateImpl::fnA = fnA; - this->obj = std::move(obj); - } - - DelegateImpl(FunPtr fn) - { - kind = FP; - DelegateImpl::fn = fn; - } - - template<typename F> DelegateImpl(F fn) - { - kind = FP; - DelegateImpl::fn = std::forward<F>(fn); - } - - DelegateImpl& operator=(const DelegateImpl& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FPA == kind) - { - obj = {}; - } - kind = del.kind; - } - if (FPA == del.kind) - { - fnA = del.fnA; - obj = del.obj; - } - else - { - fn = del.fn; - } - return *this; - } - - DelegateImpl& operator=(DelegateImpl&& del) - { - if (this == &del) return *this; - if (kind != del.kind) - { - if (FPA == kind) - { - obj = {}; - } - kind = del.kind; - } - if (FPA == del.kind) - { - fnA = del.fnA; - obj = std::move(del.obj); - } - else - { - fn = del.fn; - } - return *this; - } - - DelegateImpl& operator=(FunPtr fn) - { - if (FPA == kind) - { - obj = {}; - } - kind = FP; - this->fn = fn; - return *this; - } - - DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) - { - if (FPA == kind) - { - obj = {}; - } - kind = FP; - fn = nullptr; - return *this; - } - - operator bool() const - { - if (FP == kind) - { - return fn; - } - else - { - return fnA; - } - } - - static R IRAM_ATTR vPtrToFunAPtrExec(void* self) - { - return static_cast<DelegateImpl*>(self)->fnA( - static_cast<DelegateImpl*>(self)->obj); - }; - - operator FunVPPtr() const - { - if (FP == kind) - { - return reinterpret_cast<FunVPPtr>(fn); - } - else - { - return vPtrToFunAPtrExec; - } - } - - void* arg() const - { - if (FP == kind) - { - return nullptr; - } - else - { - return const_cast<DelegateImpl*>(this); - } - } - - R IRAM_ATTR operator()() const - { - if (FP == kind) - { - return fn(); - } - else - { - return fnA(obj); - } - } - - protected: - union { - FunPtr fn; - FunAPtr fnA; - }; - A obj; - enum { FP, FPA } kind; - }; -#endif - -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - template<typename R> - class DelegateImpl<void, R> { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; - using FunctionType = std::function<target_type>; - using FunVPPtr = R(*)(void*); - public: - DelegateImpl() - { - kind = FP; - fn = nullptr; - } - - DelegateImpl(std::nullptr_t) - { - kind = FP; - fn = nullptr; - } - - ~DelegateImpl() - { - if (FUNC == kind) - functional.~FunctionType(); - } - - DelegateImpl(const DelegateImpl& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(del.functional); - } - else - { - fn = del.fn; - } - } - - DelegateImpl(DelegateImpl&& del) - { - kind = del.kind; - if (FUNC == del.kind) - { - new (&functional) FunctionType(std::move(del.functional)); - } - else - { - fn = del.fn; - } - } - - DelegateImpl(FunPtr fn) - { - kind = FP; - DelegateImpl::fn = fn; - } - - template<typename F> DelegateImpl(F functional) - { - kind = FUNC; - new (&this->functional) FunctionType(std::forward<F>(functional)); - } - - DelegateImpl& operator=(const DelegateImpl& del) - { - if (this == &del) return *this; - if (FUNC == kind && FUNC != del.kind) - { - functional.~FunctionType(); - } - else if (FUNC != kind && FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - kind = del.kind; - if (FUNC == del.kind) - { - functional = del.functional; - } - else - { - fn = del.fn; - } - return *this; - } - - DelegateImpl& operator=(DelegateImpl&& del) - { - if (this == &del) return *this; - if (FUNC == kind && FUNC != del.kind) - { - functional.~FunctionType(); - } - else if (FUNC != kind && FUNC == del.kind) - { - new (&this->functional) FunctionType(); - } - kind = del.kind; - if (FUNC == del.kind) - { - functional = std::move(del.functional); - } - else - { - fn = del.fn; - } - return *this; - } - - DelegateImpl& operator=(FunPtr fn) - { - if (FUNC == kind) - { - functional.~FunctionType(); - kind = FP; - } - DelegateImpl::fn = fn; - return *this; - } - - DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) - { - if (FUNC == kind) - { - functional.~FunctionType(); - } - kind = FP; - fn = nullptr; - return *this; - } - - operator bool() const - { - if (FP == kind) - { - return fn; - } - else - { - return functional ? true : false; - } - } - - operator FunVPPtr() const - { - if (FP == kind) - { - return reinterpret_cast<FunVPPtr>(fn); - } - else - { - return [](void* self) -> R - { - return static_cast<DelegateImpl*>(self)->functional(); - }; - } - } - - void* arg() const - { - if (FP == kind) - { - return nullptr; - } - else - { - return const_cast<DelegateImpl*>(this); - } - } - - operator FunctionType() const - { - if (FP == kind) - { - return fn; - } - else - { - return functional; - } - } - - R IRAM_ATTR operator()() const - { - if (FP == kind) - { - return fn(); - } - else - { - return functional(); - } - } - - protected: - union { - FunctionType functional; - FunPtr fn; - }; - enum { FUNC, FP } kind; - }; -#else - template<typename R> - class DelegateImpl<void, R> { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; - using FunVPPtr = R(*)(void*); - public: - DelegateImpl() - { - fn = nullptr; - } - - DelegateImpl(std::nullptr_t) - { - fn = nullptr; - } - - DelegateImpl(const DelegateImpl& del) - { - fn = del.fn; - } - - DelegateImpl(DelegateImpl&& del) - { - fn = std::move(del.fn); - } - - DelegateImpl(FunPtr fn) - { - DelegateImpl::fn = fn; - } - - template<typename F> DelegateImpl(F fn) - { - DelegateImpl::fn = std::forward<F>(fn); - } - - DelegateImpl& operator=(const DelegateImpl& del) - { - if (this == &del) return *this; - fn = del.fn; - return *this; - } - - DelegateImpl& operator=(DelegateImpl&& del) - { - if (this == &del) return *this; - fn = std::move(del.fn); - return *this; - } - - DelegateImpl& operator=(FunPtr fn) - { - DelegateImpl::fn = fn; - return *this; - } - - DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) - { - fn = nullptr; - return *this; - } - - operator bool() const - { - return fn; - } - - operator FunVPPtr() const - { - return reinterpret_cast<FunVPPtr>(fn); - } - - void* arg() const - { - return nullptr; - } - - R IRAM_ATTR operator()() const - { - return fn(); - } - - protected: - FunPtr fn; - }; -#endif - - template<typename A = void, typename R = void, typename... P> - class Delegate : private detail::DelegatePImpl<A, R, P...> - { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A, P...); - using FunVPPtr = R(*)(void*, P...); -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - using FunctionType = std::function<target_type>; -#endif - public: - using detail::DelegatePImpl<A, R, P...>::operator bool; - using detail::DelegatePImpl<A, R, P...>::arg; - using detail::DelegatePImpl<A, R, P...>::operator(); - - operator FunVPPtr() { return detail::DelegatePImpl<A, R, P...>::operator FunVPPtr(); } -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - operator FunctionType() { return detail::DelegatePImpl<A, R, P...>::operator FunctionType(); } -#endif - - Delegate() : detail::DelegatePImpl<A, R, P...>::DelegatePImpl() {} - - Delegate(std::nullptr_t) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(nullptr) {} - - Delegate(const Delegate& del) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl( - static_cast<const detail::DelegatePImpl<A, R, P...>&>(del)) {} - - Delegate(Delegate&& del) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl( - std::move(static_cast<detail::DelegatePImpl<A, R, P...>&>(del))) {} - - Delegate(FunAPtr fnA, const A& obj) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(fnA, obj) {} - - Delegate(FunAPtr fnA, A&& obj) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(fnA, std::move(obj)) {} - - Delegate(FunPtr fn) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(fn) {} - - template<typename F> Delegate(F functional) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - detail::DelegatePImpl<A, R, P...>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - detail::DelegatePImpl<A, R, P...>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(FunPtr fn) { - detail::DelegatePImpl<A, R, P...>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - detail::DelegatePImpl<A, R, P...>::operator=(nullptr); - return *this; - } - }; - - template<typename A, typename R, typename... P> - class Delegate<A*, R, P...> : private detail::DelegatePImpl<A*, R, P...> - { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A*, P...); - using FunVPPtr = R(*)(void*, P...); -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - using FunctionType = std::function<target_type>; -#endif - public: - using detail::DelegatePImpl<A*, R, P...>::operator bool; - using detail::DelegatePImpl<A*, R, P...>::operator(); - - operator FunVPPtr() const - { - if (detail::DelegatePImpl<A*, R, P...>::FPA == detail::DelegatePImpl<A*, R, P...>::kind) - { - return reinterpret_cast<FunVPPtr>(detail::DelegatePImpl<A*, R, P...>::fnA); - } - else - { - return detail::DelegatePImpl<A*, R, P...>::operator FunVPPtr(); - } - } -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - operator FunctionType() { return detail::DelegatePImpl<A*, R, P...>::operator FunctionType(); } -#endif - void* arg() const - { - if (detail::DelegatePImpl<A*, R, P...>::FPA == detail::DelegatePImpl<A*, R, P...>::kind) - { - return detail::DelegatePImpl<A*, R, P...>::obj; - } - else - { - return detail::DelegatePImpl<A*, R, P...>::arg(); - } - } - - Delegate() : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl() {} - - Delegate(std::nullptr_t) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(nullptr) {} - - Delegate(const Delegate& del) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl( - static_cast<const detail::DelegatePImpl<A*, R, P...>&>(del)) {} - - Delegate(Delegate&& del) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl( - std::move(static_cast<detail::DelegatePImpl<A*, R, P...>&>(del))) {} - - Delegate(FunAPtr fnA, A* obj) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(fnA, obj) {} - - Delegate(FunPtr fn) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(fn) {} - - template<typename F> Delegate(F functional) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - detail::DelegatePImpl<A*, R, P...>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - detail::DelegatePImpl<A*, R, P...>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(FunPtr fn) { - detail::DelegatePImpl<A*, R, P...>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - detail::DelegatePImpl<A*, R, P...>::operator=(nullptr); - return *this; - } - }; - - template<typename R, typename... P> - class Delegate<void, R, P...> : private detail::DelegatePImpl<void, R, P...> - { - public: - using target_type = R(P...); - protected: - using FunPtr = target_type*; -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - using FunctionType = std::function<target_type>; -#endif - using FunVPPtr = R(*)(void*, P...); - public: - using detail::DelegatePImpl<void, R, P...>::operator bool; - using detail::DelegatePImpl<void, R, P...>::arg; - using detail::DelegatePImpl<void, R, P...>::operator(); - - operator FunVPPtr() const { return detail::DelegatePImpl<void, R, P...>::operator FunVPPtr(); } -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - operator FunctionType() { return detail::DelegatePImpl<void, R, P...>::operator FunctionType(); } -#endif - - Delegate() : detail::DelegatePImpl<void, R, P...>::DelegatePImpl() {} - - Delegate(std::nullptr_t) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(nullptr) {} - - Delegate(const Delegate& del) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl( - static_cast<const detail::DelegatePImpl<void, R, P...>&>(del)) {} - - Delegate(Delegate&& del) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl( - std::move(static_cast<detail::DelegatePImpl<void, R, P...>&>(del))) {} - - Delegate(FunPtr fn) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(fn) {} - - template<typename F> Delegate(F functional) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - detail::DelegatePImpl<void, R, P...>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - detail::DelegatePImpl<void, R, P...>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(FunPtr fn) { - detail::DelegatePImpl<void, R, P...>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - detail::DelegatePImpl<void, R, P...>::operator=(nullptr); - return *this; - } - }; - - template<typename A, typename R> - class Delegate<A, R> : private detail::DelegateImpl<A, R> - { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A); - using FunVPPtr = R(*)(void*); -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - using FunctionType = std::function<target_type>; -#endif - public: - using detail::DelegateImpl<A, R>::operator bool; - using detail::DelegateImpl<A, R>::arg; - using detail::DelegateImpl<A, R>::operator(); - - operator FunVPPtr() { return detail::DelegateImpl<A, R>::operator FunVPPtr(); } -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - operator FunctionType() { return detail::DelegateImpl<A, R>::operator FunctionType(); } -#endif - - Delegate() : detail::DelegateImpl<A, R>::DelegateImpl() {} - - Delegate(std::nullptr_t) : detail::DelegateImpl<A, R>::DelegateImpl(nullptr) {} - - Delegate(const Delegate& del) : detail::DelegateImpl<A, R>::DelegateImpl( - static_cast<const detail::DelegateImpl<A, R>&>(del)) {} - - Delegate(Delegate&& del) : detail::DelegateImpl<A, R>::DelegateImpl( - std::move(static_cast<detail::DelegateImpl<A, R>&>(del))) {} - - Delegate(FunAPtr fnA, const A& obj) : detail::DelegateImpl<A, R>::DelegateImpl(fnA, obj) {} - - Delegate(FunAPtr fnA, A&& obj) : detail::DelegateImpl<A, R>::DelegateImpl(fnA, std::move(obj)) {} - - Delegate(FunPtr fn) : detail::DelegateImpl<A, R>::DelegateImpl(fn) {} - - template<typename F> Delegate(F functional) : detail::DelegateImpl<A, R>::DelegateImpl(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - detail::DelegateImpl<A, R>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - detail::DelegateImpl<A, R>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(FunPtr fn) { - detail::DelegateImpl<A, R>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - detail::DelegateImpl<A, R>::operator=(nullptr); - return *this; - } - }; - - template<typename A, typename R> - class Delegate<A*, R> : private detail::DelegateImpl<A*, R> - { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; - using FunAPtr = R(*)(A*); - using FunVPPtr = R(*)(void*); -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - using FunctionType = std::function<target_type>; -#endif - public: - using detail::DelegateImpl<A*, R>::operator bool; - using detail::DelegateImpl<A*, R>::operator(); - - operator FunVPPtr() const - { - if (detail::DelegateImpl<A*, R>::FPA == detail::DelegateImpl<A*, R>::kind) - { - return reinterpret_cast<FunVPPtr>(detail::DelegateImpl<A*, R>::fnA); - } - else - { - return detail::DelegateImpl<A*, R>::operator FunVPPtr(); - } - } -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - operator FunctionType() { return detail::DelegateImpl<A*, R>::operator FunctionType(); } -#endif - void* arg() const - { - if (detail::DelegateImpl<A*, R>::FPA == detail::DelegateImpl<A*, R>::kind) - { - return detail::DelegateImpl<A*, R>::obj; - } - else - { - return detail::DelegateImpl<A*, R>::arg(); - } - } - - Delegate() : detail::DelegateImpl<A*, R>::DelegateImpl() {} - - Delegate(std::nullptr_t) : detail::DelegateImpl<A*, R>::DelegateImpl(nullptr) {} - - Delegate(const Delegate& del) : detail::DelegateImpl<A*, R>::DelegateImpl( - static_cast<const detail::DelegateImpl<A*, R>&>(del)) {} - - Delegate(Delegate&& del) : detail::DelegateImpl<A*, R>::DelegateImpl( - std::move(static_cast<detail::DelegateImpl<A*, R>&>(del))) {} - - Delegate(FunAPtr fnA, A* obj) : detail::DelegateImpl<A*, R>::DelegateImpl(fnA, obj) {} - - Delegate(FunPtr fn) : detail::DelegateImpl<A*, R>::DelegateImpl(fn) {} - - template<typename F> Delegate(F functional) : detail::DelegateImpl<A*, R>::DelegateImpl(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - detail::DelegateImpl<A*, R>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - detail::DelegateImpl<A*, R>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(FunPtr fn) { - detail::DelegateImpl<A*, R>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - detail::DelegateImpl<A*, R>::operator=(nullptr); - return *this; - } - }; - - template<typename R> - class Delegate<void, R> : private detail::DelegateImpl<void, R> - { - public: - using target_type = R(); - protected: - using FunPtr = target_type*; -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - using FunctionType = std::function<target_type>; -#endif - using FunVPPtr = R(*)(void*); - public: - using detail::DelegateImpl<void, R>::operator bool; - using detail::DelegateImpl<void, R>::arg; - using detail::DelegateImpl<void, R>::operator(); - - operator FunVPPtr() const { return detail::DelegateImpl<void, R>::operator FunVPPtr(); } -#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) - operator FunctionType() { return detail::DelegateImpl<void, R>::operator FunctionType(); } -#endif - - Delegate() : detail::DelegateImpl<void, R>::DelegateImpl() {} - - Delegate(std::nullptr_t) : detail::DelegateImpl<void, R>::DelegateImpl(nullptr) {} - - Delegate(const Delegate& del) : detail::DelegateImpl<void, R>::DelegateImpl( - static_cast<const detail::DelegateImpl<void, R>&>(del)) {} - - Delegate(Delegate&& del) : detail::DelegateImpl<void, R>::DelegateImpl( - std::move(static_cast<detail::DelegateImpl<void, R>&>(del))) {} - - Delegate(FunPtr fn) : detail::DelegateImpl<void, R>::DelegateImpl(fn) {} - - template<typename F> Delegate(F functional) : detail::DelegateImpl<void, R>::DelegateImpl(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - detail::DelegateImpl<void, R>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - detail::DelegateImpl<void, R>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(FunPtr fn) { - detail::DelegateImpl<void, R>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - detail::DelegateImpl<void, R>::operator=(nullptr); - return *this; - } - }; - } -} - -template<typename A = void, typename R = void, typename... P> class Delegate; -template<typename A, typename R, typename... P> class Delegate<R(P...), A> : public delegate::detail::Delegate<A, R, P...> -{ -public: - Delegate() : delegate::detail::Delegate<A, R, P...>::Delegate() {} - - Delegate(std::nullptr_t) : delegate::detail::Delegate<A, R, P...>::Delegate(nullptr) {} - - Delegate(const Delegate& del) : delegate::detail::Delegate<A, R, P...>::Delegate( - static_cast<const delegate::detail::Delegate<A, R, P...>&>(del)) {} - - Delegate(Delegate&& del) : delegate::detail::Delegate<A, R, P...>::Delegate( - std::move(static_cast<delegate::detail::Delegate<A, R, P...>&>(del))) {} - - Delegate(typename delegate::detail::Delegate<A, R, P...>::FunAPtr fnA, const A& obj) : delegate::detail::Delegate<A, R, P...>::Delegate(fnA, obj) {} - - Delegate(typename delegate::detail::Delegate<A, R, P...>::FunAPtr fnA, A&& obj) : delegate::detail::Delegate<A, R, P...>::Delegate(fnA, std::move(obj)) {} - - Delegate(typename delegate::detail::Delegate<A, R, P...>::FunPtr fn) : delegate::detail::Delegate<A, R, P...>::Delegate(fn) {} - - template<typename F> Delegate(F functional) : delegate::detail::Delegate<A, R, P...>::Delegate(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - delegate::detail::Delegate<A, R, P...>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - delegate::detail::Delegate<A, R, P...>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(typename delegate::detail::Delegate<A, R, P...>::FunPtr fn) { - delegate::detail::Delegate<A, R, P...>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - delegate::detail::Delegate<A, R, P...>::operator=(nullptr); - return *this; - } -}; - -template<typename R, typename... P> class Delegate<R(P...)> : public delegate::detail::Delegate<void, R, P...> -{ -public: - Delegate() : delegate::detail::Delegate<void, R, P...>::Delegate() {} - - Delegate(std::nullptr_t) : delegate::detail::Delegate<void, R, P...>::Delegate(nullptr) {} - - Delegate(const Delegate& del) : delegate::detail::Delegate<void, R, P...>::Delegate( - static_cast<const delegate::detail::Delegate<void, R, P...>&>(del)) {} - - Delegate(Delegate&& del) : delegate::detail::Delegate<void, R, P...>::Delegate( - std::move(static_cast<delegate::detail::Delegate<void, R, P...>&>(del))) {} - - Delegate(typename delegate::detail::Delegate<void, R, P...>::FunPtr fn) : delegate::detail::Delegate<void, R, P...>::Delegate(fn) {} - - template<typename F> Delegate(F functional) : delegate::detail::Delegate<void, R, P...>::Delegate(std::forward<F>(functional)) {} - - Delegate& operator=(const Delegate& del) { - delegate::detail::Delegate<void, R, P...>::operator=(del); - return *this; - } - - Delegate& operator=(Delegate&& del) { - delegate::detail::Delegate<void, R, P...>::operator=(std::move(del)); - return *this; - } - - Delegate& operator=(typename delegate::detail::Delegate<void, R, P...>::FunPtr fn) { - delegate::detail::Delegate<void, R, P...>::operator=(fn); - return *this; - } - - Delegate& IRAM_ATTR operator=(std::nullptr_t) { - delegate::detail::Delegate<void, R, P...>::operator=(nullptr); - return *this; - } -}; - -#endif // __Delegate_h diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/MultiDelegate.h b/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/MultiDelegate.h deleted file mode 100644 index 36cbd94b6da56ade07ac7ddae8715b66f1e6bb98..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/MultiDelegate.h +++ /dev/null @@ -1,567 +0,0 @@ -/* -MultiDelegate.h - A queue or event multiplexer based on the efficient Delegate -class -Copyright (c) 2019-2020 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ - -#ifndef __MULTIDELEGATE_H -#define __MULTIDELEGATE_H - -#include <iterator> -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) -#include <atomic> -#else -#include "circular_queue/ghostl.h" -#endif - -#if defined(ESP8266) -#include <interrupts.h> -using esp8266::InterruptLock; -#elif defined(ARDUINO) -class InterruptLock { -public: - InterruptLock() { - noInterrupts(); - } - ~InterruptLock() { - interrupts(); - } -}; -#else -#include <mutex> -#endif - -namespace -{ - - template< typename Delegate, typename R, bool ISQUEUE = false, typename... P> - struct CallP - { - static R execute(Delegate& del, P... args) - { - return del(std::forward<P...>(args...)); - } - }; - - template< typename Delegate, bool ISQUEUE, typename... P> - struct CallP<Delegate, void, ISQUEUE, P...> - { - static bool execute(Delegate& del, P... args) - { - del(std::forward<P...>(args...)); - return true; - } - }; - - template< typename Delegate, typename R, bool ISQUEUE = false> - struct Call - { - static R execute(Delegate& del) - { - return del(); - } - }; - - template< typename Delegate, bool ISQUEUE> - struct Call<Delegate, void, ISQUEUE> - { - static bool execute(Delegate& del) - { - del(); - return true; - } - }; - -} - -namespace delegate -{ - namespace detail - { - - template< typename Delegate, typename R, bool ISQUEUE = false, size_t QUEUE_CAPACITY = 32, typename... P> - class MultiDelegatePImpl - { - public: - MultiDelegatePImpl() = default; - ~MultiDelegatePImpl() - { - *this = nullptr; - } - - MultiDelegatePImpl(const MultiDelegatePImpl&) = delete; - MultiDelegatePImpl& operator=(const MultiDelegatePImpl&) = delete; - - MultiDelegatePImpl(MultiDelegatePImpl&& md) - { - first = md.first; - last = md.last; - unused = md.unused; - nodeCount = md.nodeCount; - md.first = nullptr; - md.last = nullptr; - md.unused = nullptr; - md.nodeCount = 0; - } - - MultiDelegatePImpl(const Delegate& del) - { - add(del); - } - - MultiDelegatePImpl(Delegate&& del) - { - add(std::move(del)); - } - - MultiDelegatePImpl& operator=(MultiDelegatePImpl&& md) - { - first = md.first; - last = md.last; - unused = md.unused; - nodeCount = md.nodeCount; - md.first = nullptr; - md.last = nullptr; - md.unused = nullptr; - md.nodeCount = 0; - return *this; - } - - MultiDelegatePImpl& operator=(std::nullptr_t) - { - if (last) - last->mNext = unused; - if (first) - unused = first; - while (unused) - { - auto to_delete = unused; - unused = unused->mNext; - delete(to_delete); - } - return *this; - } - - MultiDelegatePImpl& operator+=(const Delegate& del) - { - add(del); - return *this; - } - - MultiDelegatePImpl& operator+=(Delegate&& del) - { - add(std::move(del)); - return *this; - } - - protected: - struct Node_t - { - ~Node_t() - { - mDelegate = nullptr; // special overload in Delegate - } - Node_t* mNext = nullptr; - Delegate mDelegate; - }; - - Node_t* first = nullptr; - Node_t* last = nullptr; - Node_t* unused = nullptr; - size_t nodeCount = 0; - - // Returns a pointer to an unused Node_t, - // or if none are available allocates a new one, - // or nullptr if limit is reached - Node_t* IRAM_ATTR get_node_unsafe() - { - Node_t* result = nullptr; - // try to get an item from unused items list - if (unused) - { - result = unused; - unused = unused->mNext; - } - // if no unused items, and count not too high, allocate a new one - else if (nodeCount < QUEUE_CAPACITY) - { -#if defined(ESP8266) || defined(ESP32) - result = new (std::nothrow) Node_t; -#else - result = new Node_t; -#endif - if (result) - ++nodeCount; - } - return result; - } - - void recycle_node_unsafe(Node_t* node) - { - node->mDelegate = nullptr; // special overload in Delegate - node->mNext = unused; - unused = node; - } - -#ifndef ARDUINO - std::mutex mutex_unused; -#endif - public: - class iterator : public std::iterator<std::forward_iterator_tag, Delegate> - { - public: - Node_t* current = nullptr; - Node_t* prev = nullptr; - const Node_t* stop = nullptr; - - iterator(MultiDelegatePImpl& md) : current(md.first), stop(md.last) {} - iterator() = default; - iterator(const iterator&) = default; - iterator& operator=(const iterator&) = default; - iterator& operator=(iterator&&) = default; - operator bool() const - { - return current && stop; - } - bool operator==(const iterator& rhs) const - { - return current == rhs.current; - } - bool operator!=(const iterator& rhs) const - { - return !operator==(rhs); - } - Delegate& operator*() const - { - return current->mDelegate; - } - Delegate* operator->() const - { - return ¤t->mDelegate; - } - iterator& operator++() // prefix - { - if (current && stop != current) - { - prev = current; - current = current->mNext; - } - else - current = nullptr; // end - return *this; - } - iterator& operator++(int) // postfix - { - iterator tmp(*this); - operator++(); - return tmp; - } - }; - - iterator begin() - { - return iterator(*this); - } - iterator end() const - { - return iterator(); - } - - const Delegate* IRAM_ATTR add(const Delegate& del) - { - return add(Delegate(del)); - } - - const Delegate* IRAM_ATTR add(Delegate&& del) - { - if (!del) - return nullptr; - -#ifdef ARDUINO - InterruptLock lockAllInterruptsInThisScope; -#else - std::lock_guard<std::mutex> lock(mutex_unused); -#endif - - Node_t* item = ISQUEUE ? get_node_unsafe() : -#if defined(ESP8266) || defined(ESP32) - new (std::nothrow) Node_t; -#else - new Node_t; -#endif - if (!item) - return nullptr; - - item->mDelegate = std::move(del); - item->mNext = nullptr; - - if (last) - last->mNext = item; - else - first = item; - last = item; - - return &item->mDelegate; - } - - iterator erase(iterator it) - { - if (!it) - return end(); -#ifdef ARDUINO - InterruptLock lockAllInterruptsInThisScope; -#else - std::lock_guard<std::mutex> lock(mutex_unused); -#endif - auto to_recycle = it.current; - - if (last == it.current) - last = it.prev; - it.current = it.current->mNext; - if (it.prev) - { - it.prev->mNext = it.current; - } - else - { - first = it.current; - } - if (ISQUEUE) - recycle_node_unsafe(to_recycle); - else - delete to_recycle; - return it; - } - - bool erase(const Delegate* const del) - { - auto it = begin(); - while (it) - { - if (del == &(*it)) - { - erase(it); - return true; - } - ++it; - } - return false; - } - - operator bool() const - { - return first; - } - - R operator()(P... args) - { - auto it = begin(); - if (!it) - return {}; - - static std::atomic<bool> fence(false); - // prevent recursive calls -#if defined(ARDUINO) && !defined(ESP32) - if (fence.load()) return {}; - fence.store(true); -#else - if (fence.exchange(true)) return {}; -#endif - - R result; - do - { - result = CallP<Delegate, R, ISQUEUE, P...>::execute(*it, args...); - if (result && ISQUEUE) - it = erase(it); - else - ++it; -#if defined(ESP8266) || defined(ESP32) - // running callbacks might last too long for watchdog etc. - optimistic_yield(10000); -#endif - } while (it); - - fence.store(false); - return result; - } - }; - - template< typename Delegate, typename R = void, bool ISQUEUE = false, size_t QUEUE_CAPACITY = 32> - class MultiDelegateImpl : public MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY> - { - public: - using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::MultiDelegatePImpl; - - R operator()() - { - auto it = this->begin(); - if (!it) - return {}; - - static std::atomic<bool> fence(false); - // prevent recursive calls -#if defined(ARDUINO) && !defined(ESP32) - if (fence.load()) return {}; - fence.store(true); -#else - if (fence.exchange(true)) return {}; -#endif - - R result; - do - { - result = Call<Delegate, R, ISQUEUE>::execute(*it); - if (result && ISQUEUE) - it = this->erase(it); - else - ++it; -#if defined(ESP8266) || defined(ESP32) - // running callbacks might last too long for watchdog etc. - optimistic_yield(10000); -#endif - } while (it); - - fence.store(false); - return result; - } - }; - - template< typename Delegate, typename R, bool ISQUEUE, size_t QUEUE_CAPACITY, typename... P> class MultiDelegate; - - template< typename Delegate, typename R, bool ISQUEUE, size_t QUEUE_CAPACITY, typename... P> - class MultiDelegate<Delegate, R(P...), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY, P...> - { - public: - using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY, P...>::MultiDelegatePImpl; - }; - - template< typename Delegate, typename R, bool ISQUEUE, size_t QUEUE_CAPACITY> - class MultiDelegate<Delegate, R(), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegateImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY> - { - public: - using MultiDelegateImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::MultiDelegateImpl; - }; - - template< typename Delegate, bool ISQUEUE, size_t QUEUE_CAPACITY, typename... P> - class MultiDelegate<Delegate, void(P...), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegatePImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY, P...> - { - public: - using MultiDelegatePImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY, P...>::MultiDelegatePImpl; - - void operator()(P... args) - { - auto it = this->begin(); - if (!it) - return; - - static std::atomic<bool> fence(false); - // prevent recursive calls -#if defined(ARDUINO) && !defined(ESP32) - if (fence.load()) return; - fence.store(true); -#else - if (fence.exchange(true)) return; -#endif - - do - { - CallP<Delegate, void, ISQUEUE, P...>::execute(*it, args...); - if (ISQUEUE) - it = this->erase(it); - else - ++it; -#if defined(ESP8266) || defined(ESP32) - // running callbacks might last too long for watchdog etc. - optimistic_yield(10000); -#endif - } while (it); - - fence.store(false); - } - }; - - template< typename Delegate, bool ISQUEUE, size_t QUEUE_CAPACITY> - class MultiDelegate<Delegate, void(), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegateImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY> - { - public: - using MultiDelegateImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY>::MultiDelegateImpl; - - void operator()() - { - auto it = this->begin(); - if (!it) - return; - - static std::atomic<bool> fence(false); - // prevent recursive calls -#if defined(ARDUINO) && !defined(ESP32) - if (fence.load()) return; - fence.store(true); -#else - if (fence.exchange(true)) return; -#endif - - do - { - Call<Delegate, void, ISQUEUE>::execute(*it); - if (ISQUEUE) - it = this->erase(it); - else - ++it; -#if defined(ESP8266) || defined(ESP32) - // running callbacks might last too long for watchdog etc. - optimistic_yield(10000); -#endif - } while (it); - - fence.store(false); - } - }; - - } - -} - -/** -The MultiDelegate class template can be specialized to either a queue or an event multiplexer. -It is designed to be used with Delegate, the efficient runtime wrapper for C function ptr and C++ std::function. -@tparam Delegate specifies the concrete type that MultiDelegate bases the queue or event multiplexer on. -@tparam ISQUEUE modifies the generated MultiDelegate class in subtle ways. In queue mode (ISQUEUE == true), - the value of QUEUE_CAPACITY enforces the maximum number of simultaneous items the queue can contain. - This is exploited to minimize the use of new and delete by reusing already allocated items, thus - reducing heap fragmentation. In event multiplexer mode (ISQUEUE = false), new and delete are - used for allocation of the event handler items. - If the result type of the function call operator of Delegate is void, calling a MultiDelegate queue - removes each item after calling it; a Multidelegate event multiplexer keeps event handlers until - explicitly removed. - If the result type of the function call operator of Delegate is non-void, in a MultiDelegate queue - the type-conversion to bool of that result determines if the item is immediately removed or kept - after each call: if true is returned, the item is removed. A Multidelegate event multiplexer keeps event - handlers until they are explicitly removed. -@tparam QUEUE_CAPACITY is only used if ISQUEUE == true. Then, it sets the maximum capacity that the queue dynamically - allocates from the heap. Unused items are not returned to the heap, but are managed by the MultiDelegate - instance during its own lifetime for efficiency. -*/ -template< typename Delegate, bool ISQUEUE = false, size_t QUEUE_CAPACITY = 32> -class MultiDelegate : public delegate::detail::MultiDelegate<Delegate, typename Delegate::target_type, ISQUEUE, QUEUE_CAPACITY> -{ -public: - using delegate::detail::MultiDelegate<Delegate, typename Delegate::target_type, ISQUEUE, QUEUE_CAPACITY>::MultiDelegate; -}; - -#endif // __MULTIDELEGATE_H diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/circular_queue.h b/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/circular_queue.h deleted file mode 100644 index dc5c0d2692bcafc83f4cf6b5677661b2d3e31896..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/circular_queue.h +++ /dev/null @@ -1,393 +0,0 @@ -/* -circular_queue.h - Implementation of a lock-free circular queue for EspSoftwareSerial. -Copyright (c) 2019 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ - -#ifndef __circular_queue_h -#define __circular_queue_h - -#ifdef ARDUINO -#include <Arduino.h> -#endif - -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) -#include <atomic> -#include <memory> -#include <algorithm> -#include "Delegate.h" -using std::min; -#else -#include "ghostl.h" -#endif - -#if !defined(ESP32) && !defined(ESP8266) -#define IRAM_ATTR -#endif - -/*! - @brief Instance class for a single-producer, single-consumer circular queue / ring buffer (FIFO). - This implementation is lock-free between producer and consumer for the available(), peek(), - pop(), and push() type functions. -*/ -template< typename T, typename ForEachArg = void > -class circular_queue -{ -public: - /*! - @brief Constructs a valid, but zero-capacity dummy queue. - */ - circular_queue() : m_bufSize(1) - { - m_inPos.store(0); - m_outPos.store(0); - } - /*! - @brief Constructs a queue of the given maximum capacity. - */ - circular_queue(const size_t capacity) : m_bufSize(capacity + 1), m_buffer(new T[m_bufSize]) - { - m_inPos.store(0); - m_outPos.store(0); - } - circular_queue(circular_queue&& cq) : - m_bufSize(cq.m_bufSize), m_buffer(cq.m_buffer), m_inPos(cq.m_inPos.load()), m_outPos(cq.m_outPos.load()) - {} - ~circular_queue() - { - m_buffer.reset(); - } - circular_queue(const circular_queue&) = delete; - circular_queue& operator=(circular_queue&& cq) - { - m_bufSize = cq.m_bufSize; - m_buffer = cq.m_buffer; - m_inPos.store(cq.m_inPos.load()); - m_outPos.store(cq.m_outPos.load()); - } - circular_queue& operator=(const circular_queue&) = delete; - - /*! - @brief Get the numer of elements the queue can hold at most. - */ - size_t capacity() const - { - return m_bufSize - 1; - } - - /*! - @brief Resize the queue. The available elements in the queue are preserved. - This is not lock-free and concurrent producer or consumer access - will lead to corruption. - @return True if the new capacity could accommodate the present elements in - the queue, otherwise nothing is done and false is returned. - */ - bool capacity(const size_t cap); - - /*! - @brief Discard all data in the queue. - */ - void flush() - { - m_outPos.store(m_inPos.load()); - } - - /*! - @brief Get a snapshot number of elements that can be retrieved by pop. - */ - size_t available() const - { - int avail = static_cast<int>(m_inPos.load() - m_outPos.load()); - if (avail < 0) avail += m_bufSize; - return avail; - } - - /*! - @brief Get the remaining free elementes for pushing. - */ - size_t available_for_push() const - { - int avail = static_cast<int>(m_outPos.load() - m_inPos.load()) - 1; - if (avail < 0) avail += m_bufSize; - return avail; - } - - /*! - @brief Peek at the next element pop will return without removing it from the queue. - @return An rvalue copy of the next element that can be popped. If the queue is empty, - return an rvalue copy of the element that is pending the next push. - */ - T peek() const - { - const auto outPos = m_outPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - return m_buffer[outPos]; - } - - /*! - @brief Peek at the next pending input value. - @return A reference to the next element that can be pushed. - */ - inline T& IRAM_ATTR pushpeek() __attribute__((always_inline)) - { - const auto inPos = m_inPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - return m_buffer[inPos]; - } - - /*! - @brief Release the next pending input value, accessible by pushpeek(), into the queue. - @return true if the queue accepted the value, false if the queue - was full. - */ - inline bool IRAM_ATTR push() __attribute__((always_inline)) - { - const auto inPos = m_inPos.load(std::memory_order_acquire); - const size_t next = (inPos + 1) % m_bufSize; - if (next == m_outPos.load(std::memory_order_relaxed)) { - return false; - } - - std::atomic_thread_fence(std::memory_order_acquire); - - m_inPos.store(next, std::memory_order_release); - return true; - } - - /*! - @brief Move the rvalue parameter into the queue. - @return true if the queue accepted the value, false if the queue - was full. - */ - inline bool IRAM_ATTR push(T&& val) __attribute__((always_inline)) - { - const auto inPos = m_inPos.load(std::memory_order_acquire); - const size_t next = (inPos + 1) % m_bufSize; - if (next == m_outPos.load(std::memory_order_relaxed)) { - return false; - } - - std::atomic_thread_fence(std::memory_order_acquire); - - m_buffer[inPos] = std::move(val); - - std::atomic_thread_fence(std::memory_order_release); - - m_inPos.store(next, std::memory_order_release); - return true; - } - - /*! - @brief Push a copy of the parameter into the queue. - @return true if the queue accepted the value, false if the queue - was full. - */ - inline bool IRAM_ATTR push(const T& val) __attribute__((always_inline)) - { - T v(val); - return push(std::move(v)); - } - -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) - /*! - @brief Push copies of multiple elements from a buffer into the queue, - in order, beginning at buffer's head. - @return The number of elements actually copied into the queue, counted - from the buffer head. - */ - size_t push_n(const T* buffer, size_t size); -#endif - - /*! - @brief Pop the next available element from the queue. - @return An rvalue copy of the popped element, or a default - value of type T if the queue is empty. - */ - T pop(); - -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) - /*! - @brief Pop multiple elements in ordered sequence from the queue to a buffer. - If buffer is nullptr, simply discards up to size elements from the queue. - @return The number of elements actually popped from the queue to - buffer. - */ - size_t pop_n(T* buffer, size_t size); -#endif - - /*! - @brief Iterate over and remove each available element from queue, - calling back fun with an rvalue reference of every single element. - */ -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) - void for_each(const Delegate<void(T&&), ForEachArg>& fun); -#else - void for_each(Delegate<void(T&&), ForEachArg> fun); -#endif - - /*! - @brief In reverse order, iterate over, pop and optionally requeue each available element from the queue, - calling back fun with a reference of every single element. - Requeuing is dependent on the return boolean of the callback function. If it - returns true, the requeue occurs. - */ -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) - bool for_each_rev_requeue(const Delegate<bool(T&), ForEachArg>& fun); -#else - bool for_each_rev_requeue(Delegate<bool(T&), ForEachArg> fun); -#endif - -protected: - const T defaultValue = {}; - size_t m_bufSize; -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) - std::unique_ptr<T[]> m_buffer; -#else - std::unique_ptr<T> m_buffer; -#endif - std::atomic<size_t> m_inPos; - std::atomic<size_t> m_outPos; -}; - -template< typename T, typename ForEachArg > -bool circular_queue<T, ForEachArg>::capacity(const size_t cap) -{ - if (cap + 1 == m_bufSize) return true; - else if (available() > cap) return false; - std::unique_ptr<T[] > buffer(new T[cap + 1]); - const auto available = pop_n(buffer, cap); - m_buffer.reset(buffer); - m_bufSize = cap + 1; - std::atomic_thread_fence(std::memory_order_release); - m_inPos.store(available, std::memory_order_relaxed); - m_outPos.store(0, std::memory_order_release); - return true; -} - -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) -template< typename T, typename ForEachArg > -size_t circular_queue<T, ForEachArg>::push_n(const T* buffer, size_t size) -{ - const auto inPos = m_inPos.load(std::memory_order_acquire); - const auto outPos = m_outPos.load(std::memory_order_relaxed); - - size_t blockSize = (outPos > inPos) ? outPos - 1 - inPos : (outPos == 0) ? m_bufSize - 1 - inPos : m_bufSize - inPos; - blockSize = min(size, blockSize); - if (!blockSize) return 0; - int next = (inPos + blockSize) % m_bufSize; - - std::atomic_thread_fence(std::memory_order_acquire); - - auto dest = m_buffer.get() + inPos; - std::copy_n(std::make_move_iterator(buffer), blockSize, dest); - size = min(size - blockSize, outPos > 1 ? static_cast<size_t>(outPos - next - 1) : 0); - next += size; - dest = m_buffer.get(); - std::copy_n(std::make_move_iterator(buffer + blockSize), size, dest); - - std::atomic_thread_fence(std::memory_order_release); - - m_inPos.store(next, std::memory_order_release); - return blockSize + size; -} -#endif - -template< typename T, typename ForEachArg > -T circular_queue<T, ForEachArg>::pop() -{ - const auto outPos = m_outPos.load(std::memory_order_acquire); - if (m_inPos.load(std::memory_order_relaxed) == outPos) return defaultValue; - - std::atomic_thread_fence(std::memory_order_acquire); - - auto val = std::move(m_buffer[outPos]); - - std::atomic_thread_fence(std::memory_order_release); - - m_outPos.store((outPos + 1) % m_bufSize, std::memory_order_release); - return val; -} - -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) -template< typename T, typename ForEachArg > -size_t circular_queue<T, ForEachArg>::pop_n(T* buffer, size_t size) { - size_t avail = size = min(size, available()); - if (!avail) return 0; - const auto outPos = m_outPos.load(std::memory_order_acquire); - size_t n = min(avail, static_cast<size_t>(m_bufSize - outPos)); - - std::atomic_thread_fence(std::memory_order_acquire); - - if (buffer) { - buffer = std::copy_n(std::make_move_iterator(m_buffer.get() + outPos), n, buffer); - avail -= n; - std::copy_n(std::make_move_iterator(m_buffer.get()), avail, buffer); - } - - std::atomic_thread_fence(std::memory_order_release); - - m_outPos.store((outPos + size) % m_bufSize, std::memory_order_release); - return size; -} -#endif - -template< typename T, typename ForEachArg > -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) -void circular_queue<T, ForEachArg>::for_each(const Delegate<void(T&&), ForEachArg>& fun) -#else -void circular_queue<T, ForEachArg>::for_each(Delegate<void(T&&), ForEachArg> fun) -#endif -{ - auto outPos = m_outPos.load(std::memory_order_acquire); - const auto inPos = m_inPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - while (outPos != inPos) - { - fun(std::move(m_buffer[outPos])); - std::atomic_thread_fence(std::memory_order_release); - outPos = (outPos + 1) % m_bufSize; - m_outPos.store(outPos, std::memory_order_release); - } -} - -template< typename T, typename ForEachArg > -#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) -bool circular_queue<T, ForEachArg>::for_each_rev_requeue(const Delegate<bool(T&), ForEachArg>& fun) -#else -bool circular_queue<T, ForEachArg>::for_each_rev_requeue(Delegate<bool(T&), ForEachArg> fun) -#endif -{ - auto inPos0 = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_acquire); - auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - if (outPos == inPos0) return false; - auto pos = inPos0; - auto outPos1 = inPos0; - const auto posDecr = circular_queue<T, ForEachArg>::m_bufSize - 1; - do { - pos = (pos + posDecr) % circular_queue<T, ForEachArg>::m_bufSize; - T&& val = std::move(circular_queue<T, ForEachArg>::m_buffer[pos]); - if (fun(val)) - { - outPos1 = (outPos1 + posDecr) % circular_queue<T, ForEachArg>::m_bufSize; - if (outPos1 != pos) circular_queue<T, ForEachArg>::m_buffer[outPos1] = std::move(val); - } - } while (pos != outPos); - circular_queue<T, ForEachArg>::m_outPos.store(outPos1, std::memory_order_release); - return true; -} - -#endif // __circular_queue_h diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/circular_queue_mp.h b/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/circular_queue_mp.h deleted file mode 100644 index ba37689089d421a4c80f32a56fad9c2f628c22f4..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/circular_queue_mp.h +++ /dev/null @@ -1,200 +0,0 @@ -/* -circular_queue_mp.h - Implementation of a lock-free circular queue for EspSoftwareSerial. -Copyright (c) 2019 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ - -#ifndef __circular_queue_mp_h -#define __circular_queue_mp_h - -#include "circular_queue.h" - -#ifdef ESP8266 -#include "interrupts.h" -#else -#include <mutex> -#endif - -/*! - @brief Instance class for a multi-producer, single-consumer circular queue / ring buffer (FIFO). - This implementation is lock-free between producers and consumer for the available(), peek(), - pop(), and push() type functions, but is guarded to safely allow only a single producer - at any instant. -*/ -template< typename T, typename ForEachArg = void > -class circular_queue_mp : protected circular_queue<T, ForEachArg> -{ -public: - circular_queue_mp() = default; - circular_queue_mp(const size_t capacity) : circular_queue<T, ForEachArg>(capacity) - {} - circular_queue_mp(circular_queue<T, ForEachArg>&& cq) : circular_queue<T, ForEachArg>(std::move(cq)) - {} - using circular_queue<T, ForEachArg>::operator=; - using circular_queue<T, ForEachArg>::capacity; - using circular_queue<T, ForEachArg>::flush; - using circular_queue<T, ForEachArg>::available; - using circular_queue<T, ForEachArg>::available_for_push; - using circular_queue<T, ForEachArg>::peek; - using circular_queue<T, ForEachArg>::pop; - using circular_queue<T, ForEachArg>::pop_n; - using circular_queue<T, ForEachArg>::for_each; - using circular_queue<T, ForEachArg>::for_each_rev_requeue; - - /*! - @brief Resize the queue. The available elements in the queue are preserved. - This is not lock-free, but safe, concurrent producer or consumer access - is guarded. - @return True if the new capacity could accommodate the present elements in - the queue, otherwise nothing is done and false is returned. - */ - bool capacity(const size_t cap) - { -#ifdef ESP8266 - esp8266::InterruptLock lock; -#else - std::lock_guard<std::mutex> lock(m_pushMtx); -#endif - return circular_queue<T, ForEachArg>::capacity(cap); - } - - bool IRAM_ATTR push() = delete; - - /*! - @brief Move the rvalue parameter into the queue, guarded - for multiple concurrent producers. - @return true if the queue accepted the value, false if the queue - was full. - */ - bool IRAM_ATTR push(T&& val) - { -#ifdef ESP8266 - esp8266::InterruptLock lock; -#else - std::lock_guard<std::mutex> lock(m_pushMtx); -#endif - return circular_queue<T, ForEachArg>::push(std::move(val)); - } - - /*! - @brief Push a copy of the parameter into the queue, guarded - for multiple concurrent producers. - @return true if the queue accepted the value, false if the queue - was full. - */ - bool IRAM_ATTR push(const T& val) - { -#ifdef ESP8266 - esp8266::InterruptLock lock; -#else - std::lock_guard<std::mutex> lock(m_pushMtx); -#endif - return circular_queue<T, ForEachArg>::push(val); - } - - /*! - @brief Push copies of multiple elements from a buffer into the queue, - in order, beginning at buffer's head. This is guarded for - multiple producers, push_n() is atomic. - @return The number of elements actually copied into the queue, counted - from the buffer head. - */ - size_t push_n(const T* buffer, size_t size) - { -#ifdef ESP8266 - esp8266::InterruptLock lock; -#else - std::lock_guard<std::mutex> lock(m_pushMtx); -#endif - return circular_queue<T, ForEachArg>::push_n(buffer, size); - } - - /*! - @brief Pops the next available element from the queue, requeues - it immediately. - @return A reference to the just requeued element, or the default - value of type T if the queue is empty. - */ - T& pop_requeue(); - - /*! - @brief Iterate over, pop and optionally requeue each available element from the queue, - calling back fun with a reference of every single element. - Requeuing is dependent on the return boolean of the callback function. If it - returns true, the requeue occurs. - */ - bool for_each_requeue(const Delegate<bool(T&), ForEachArg>& fun); - -#ifndef ESP8266 -protected: - std::mutex m_pushMtx; -#endif -}; - -template< typename T, typename ForEachArg > -T& circular_queue_mp<T, ForEachArg>::pop_requeue() -{ -#ifdef ESP8266 - esp8266::InterruptLock lock; -#else - std::lock_guard<std::mutex> lock(m_pushMtx); -#endif - const auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_acquire); - const auto inPos = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - if (inPos == outPos) return circular_queue<T, ForEachArg>::defaultValue; - T& val = circular_queue<T, ForEachArg>::m_buffer[inPos] = std::move(circular_queue<T, ForEachArg>::m_buffer[outPos]); - const auto bufSize = circular_queue<T, ForEachArg>::m_bufSize; - std::atomic_thread_fence(std::memory_order_release); - circular_queue<T, ForEachArg>::m_outPos.store((outPos + 1) % bufSize, std::memory_order_relaxed); - circular_queue<T, ForEachArg>::m_inPos.store((inPos + 1) % bufSize, std::memory_order_release); - return val; -} - -template< typename T, typename ForEachArg > -bool circular_queue_mp<T, ForEachArg>::for_each_requeue(const Delegate<bool(T&), ForEachArg>& fun) -{ - auto inPos0 = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_acquire); - auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - if (outPos == inPos0) return false; - do { - T&& val = std::move(circular_queue<T, ForEachArg>::m_buffer[outPos]); - if (fun(val)) - { -#ifdef ESP8266 - esp8266::InterruptLock lock; -#else - std::lock_guard<std::mutex> lock(m_pushMtx); -#endif - std::atomic_thread_fence(std::memory_order_release); - auto inPos = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_relaxed); - std::atomic_thread_fence(std::memory_order_acquire); - circular_queue<T, ForEachArg>::m_buffer[inPos] = std::move(val); - std::atomic_thread_fence(std::memory_order_release); - circular_queue<T, ForEachArg>::m_inPos.store((inPos + 1) % circular_queue<T, ForEachArg>::m_bufSize, std::memory_order_release); - } - else - { - std::atomic_thread_fence(std::memory_order_release); - } - outPos = (outPos + 1) % circular_queue<T, ForEachArg>::m_bufSize; - circular_queue<T, ForEachArg>::m_outPos.store(outPos, std::memory_order_release); - } while (outPos != inPos0); - return true; -} - -#endif // __circular_queue_mp_h diff --git a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/ghostl.h b/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/ghostl.h deleted file mode 100644 index 50f522c96afdff631143266e39ba9b663805ad75..0000000000000000000000000000000000000000 --- a/ampel-firmware/src/lib/EspSoftwareSerial/circular_queue/ghostl.h +++ /dev/null @@ -1,94 +0,0 @@ -/* -ghostl.h - Implementation of a bare-bones, mostly no-op, C++ STL shell - that allows building some Arduino ESP8266/ESP32 - libraries on Aruduino AVR. -Copyright (c) 2019 Dirk O. Kaar. All rights reserved. - -This library is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -This library is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this library; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ - -#ifndef __ghostl_h -#define __ghostl_h - -#if defined(ARDUINO_ARCH_SAMD) -#include <atomic> -#endif - -using size_t = decltype(sizeof(char)); - -namespace std -{ -#if !defined(ARDUINO_ARCH_SAMD) - typedef enum memory_order { - memory_order_relaxed, - memory_order_acquire, - memory_order_release, - memory_order_seq_cst - } memory_order; - template< typename T > class atomic { - private: - T value; - public: - atomic() {} - atomic(T desired) { value = desired; } - void store(T desired, std::memory_order = std::memory_order_seq_cst) volatile noexcept { value = desired; } - T load(std::memory_order = std::memory_order_seq_cst) const volatile noexcept { return value; } - }; - inline void atomic_thread_fence(std::memory_order order) noexcept {} - template< typename T > T&& move(T& t) noexcept { return static_cast<T&&>(t); } -#endif - - template< typename T, size_t long N > struct array - { - T _M_elems[N]; - decltype(sizeof(0)) size() const { return N; } - T& operator[](decltype(sizeof(0)) i) { return _M_elems[i]; } - const T& operator[](decltype(sizeof(0)) i) const { return _M_elems[i]; } - }; - - template< typename T > class unique_ptr - { - public: - using pointer = T*; - unique_ptr() noexcept : ptr(nullptr) {} - unique_ptr(pointer p) : ptr(p) {} - pointer operator->() const noexcept { return ptr; } - T& operator[](decltype(sizeof(0)) i) const { return ptr[i]; } - void reset(pointer p = pointer()) noexcept - { - delete ptr; - ptr = p; - } - T& operator*() const { return *ptr; } - private: - pointer ptr; - }; - - template< typename T > using function = T*; - using nullptr_t = decltype(nullptr); - - template<typename T> - struct identity { - typedef T type; - }; - - template <typename T> - inline T&& forward(typename identity<T>::type& t) noexcept - { - return static_cast<typename identity<T>::type&&>(t); - } -} - -#endif // __ghostl_h