#include "led_effects.h" /***************************************************************** * Configuration * *****************************************************************/ namespace config { const uint8_t max_brightness = MAX_BRIGHTNESS; #if defined(MIN_BRIGHTNESS) const uint8_t min_brightness = MIN_BRIGHTNESS; #else const uint8_t min_brightness = MAX_BRIGHTNESS; #endif const uint8_t brightness_amplitude = config::max_brightness - config::min_brightness; const int kitt_tail = 3; // How many dimmer LEDs follow in K.I.T.T. wheel const uint16_t poor_air_quality_ppm = 1600; // Above this threshold, LED breathing effect is faster. bool night_mode = false; //NOTE: Use a class instead? NightMode could then be another state. #if !defined(LED_COUNT) # define LED_COUNT 12 #endif const uint16_t led_count = LED_COUNT; #if LED_COUNT == 12 //NOTE: One value has been prepended, to make calculations easier and avoid out of bounds index. const uint16_t co2_ticks[led_count + 1] = { 0, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200 }; // [ppm] // For a given LED, which color should be displayed? First LED will be pure green (hue angle 120°), // last 4 LEDs will be pure red (hue angle 0°), LEDs in-between will be yellowish. const uint16_t led_hues[led_count] = { 21845U, 19114U, 16383U, 13653U, 10922U, 8191U, 5461U, 2730U, 0, 0, 0, 0 }; // [hue angle] #elif LED_COUNT == 16 const uint16_t co2_ticks[led_count + 1] = { 0, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1800, 2000, 2200 }; // [ppm] const uint16_t led_hues[led_count] = { 21845U, 20024U, 18204U, 16383U, 14563U, 12742U, 10922U, 9102U, 7281U, 5461U, 3640U, 1820U, 0, 0, 0, 0 }; // [hue angle] #else # error "Only 12 and 16 LEDs rings are currently supported." #endif } #if defined(ESP8266) // NeoPixels on GPIO05, aka D1 on ESP8266. const int NEOPIXELS_PIN = 5; #elif defined(ESP32) // NeoPixels on GPIO23 on ESP32. To avoid conflict with LoRa_SCK on TTGO. const int NEOPIXELS_PIN = 23; #endif Adafruit_NeoPixel pixels(config::led_count, NEOPIXELS_PIN, NEO_GRB + NEO_KHZ800); namespace led_effects { //On-board LED on D4, aka GPIO02 const int ONBOARD_LED_PIN = 2; void setupOnBoardLED() { pinMode(ONBOARD_LED_PIN, OUTPUT); } void onBoardLEDOff() { //NOTE: OFF is LOW on ESP32 and HIGH on ESP8266 :-/ #ifdef ESP8266 digitalWrite(ONBOARD_LED_PIN, HIGH); #else digitalWrite(ONBOARD_LED_PIN, LOW); #endif } void onBoardLEDOn() { #ifdef ESP8266 digitalWrite(ONBOARD_LED_PIN, LOW); #else digitalWrite(ONBOARD_LED_PIN, HIGH); #endif } void LEDsOff() { pixels.clear(); pixels.show(); onBoardLEDOff(); } void showColor(int32_t color) { config::night_mode = true; // In order to avoid overwriting the desired color next time CO2 is displayed pixels.setBrightness(255); pixels.fill(color); pixels.show(); } void setupRing() { pixels.begin(); pixels.setBrightness(config::max_brightness); LEDsOff(); sensor_console::defineCommand("night_mode", toggleNightMode, F("(Toggles night mode on/off)")); sensor_console::defineIntCommand("color", showColor, F("0xFF0015 (Shows color, specified as RGB, for debugging)")); } void toggleNightMode() { config::night_mode = !config::night_mode; if (config::night_mode) { Serial.println(F("NIGHT MODE!")); LEDsOff(); } else { Serial.println(F("DAY MODE!")); } } //NOTE: basically one iteration of KITT wheel void showWaitingLED(uint32_t color) { using namespace config; delay(80); if (night_mode) { return; } static uint16_t kitt_offset = 0; pixels.clear(); for (int j = kitt_tail; j >= 0; j--) { int ledNumber = abs((kitt_offset - j + led_count) % (2 * led_count) - led_count) % led_count; // Triangular function pixels.setPixelColor(ledNumber, color * pixels.gamma8(255 - j * 76) / 255); } pixels.show(); kitt_offset++; } // Start K.I.T.T. led effect. Red color as default. // Simulate a moving LED with tail. First LED starts at 0, and moves along a triangular function. The tail follows, with decreasing brightness. // Takes approximately 1s for each direction. void showKITTWheel(uint32_t color, uint16_t duration_s) { pixels.setBrightness(config::max_brightness); for (int i = 0; i < duration_s * config::led_count; ++i) { showWaitingLED(color); } } /* * For a given CO2 level and ledId, which brightness should be displayed? 0 for off, 255 for on. Something in-between for partial LED. * For example, for 1500ppm, every LED between 0 and 7 (500 -> 1400ppm) should be on, LED at 8 (1600ppm) should be half-on. */ uint8_t getLedBrightness(uint16_t co2, int ledId) { if (co2 >= config::co2_ticks[ledId + 1]) { return 255; } else { if (2 * co2 >= config::co2_ticks[ledId] + config::co2_ticks[ledId + 1]) { // Show partial LED if co2 more than halfway between ticks. return 27; // Brightness isn't linear, so 27 / 255 looks much brighter than 10% } else { // LED off because co2 below previous tick return 0; } } } /** * If enabled, slowly varies the brightness between MAX_BRIGHTNESS & MIN_BRIGHTNESS. */ void breathe(int16_t co2) { static uint8_t breathing_offset = 0; uint16_t brightness = config::min_brightness + pixels.sine8(breathing_offset) * config::brightness_amplitude / 255; pixels.setBrightness(brightness); pixels.show(); breathing_offset += co2 > config::poor_air_quality_ppm ? 6 : 3; // breathing speed. +3 looks like slow human breathing. } /** * Fills the whole ring with green, yellow, orange or black, depending on co2 input and CO2_TICKS. */ void displayCO2color(uint16_t co2) { if (config::night_mode) { return; } pixels.setBrightness(config::max_brightness); for (int ledId = 0; ledId < config::led_count; ++ledId) { uint8_t brightness = getLedBrightness(co2, ledId); pixels.setPixelColor(ledId, pixels.ColorHSV(config::led_hues[ledId], 255, brightness)); } pixels.show(); if (config::brightness_amplitude > 0) { breathe(co2); } } void showRainbowWheel(uint16_t duration_ms) { if (config::night_mode) { return; } static uint16_t wheel_offset = 0; static uint16_t sine_offset = 0; unsigned long t0 = millis(); pixels.setBrightness(config::max_brightness); while (millis() - t0 < duration_ms) { for (int i = 0; i < config::led_count; i++) { pixels.setPixelColor(i, pixels.ColorHSV(i * 65535 / config::led_count + wheel_offset)); wheel_offset += (pixels.sine8(sine_offset++ / 50) - 127) / 2; } pixels.show(); delay(10); } } void redAlert() { if (config::night_mode) { onBoardLEDOn(); delay(500); onBoardLEDOff(); delay(500); return; } for (int i = 0; i < 10; i++) { pixels.setBrightness(static_cast(config::max_brightness * (1 - i * 0.1))); delay(50); pixels.fill(color::red); pixels.show(); } } void greenAlert() { static uint8_t i; i = (i + 1) % 10; pixels.setBrightness(static_cast(config::max_brightness * (1 - i * 0.1))); delay(50); pixels.fill(color::green); pixels.show(); } /** * Displays a complete blue circle, and starts removing LEDs one by one. Returns the number of remaining LEDs. * Can be used for calibration, e.g. when countdown is 0. Does not work in night mode. */ int countdownToZero() { if (config::night_mode) { Serial.println(F("Night mode. Not doing anything.")); delay(1000); // Wait for a while, to avoid coming back to this function too many times when button is pressed. return 1; } pixels.fill(color::blue); pixels.show(); int countdown; for (countdown = config::led_count; countdown >= 0 && !digitalRead(0); countdown--) { pixels.setPixelColor(countdown, color::black); pixels.show(); Serial.println(countdown); delay(500); } return countdown; } }