// Implements the RMT peripheral on Espressif SoCs // Copyright (c) 2020 Lucian Copeland for Adafruit Industries /* Uses code from Espressif RGB LED Strip demo and drivers * Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(ESP32) #include #include "driver/rmt.h" #if defined(ESP_IDF_VERSION) #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0) #define HAS_ESP_IDF_4 #endif #endif // This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered // to work with the Arduino version of the ESP-IDF (3.2) #define WS2812_T0H_NS (400) #define WS2812_T0L_NS (850) #define WS2812_T1H_NS (800) #define WS2812_T1L_NS (450) #define WS2811_T0H_NS (500) #define WS2811_T0L_NS (2000) #define WS2811_T1H_NS (1200) #define WS2811_T1L_NS (1300) static uint32_t t0h_ticks = 0; static uint32_t t1h_ticks = 0; static uint32_t t0l_ticks = 0; static uint32_t t1l_ticks = 0; // Limit the number of RMT channels available for the Neopixels. Defaults to all // channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free // any channels with a higher number for other uses, such as IR send-and-recieve // libraries. Redefine as 1 to restrict Neopixels to only a single channel. #define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX #define RMT_LL_HW_BASE (&RMT) bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX]; static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size, size_t wanted_num, size_t *translated_size, size_t *item_num) { if (src == NULL || dest == NULL) { *translated_size = 0; *item_num = 0; return; } const rmt_item32_t bit0 = {{{ t0h_ticks, 1, t0l_ticks, 0 }}}; //Logical 0 const rmt_item32_t bit1 = {{{ t1h_ticks, 1, t1l_ticks, 0 }}}; //Logical 1 size_t size = 0; size_t num = 0; uint8_t *psrc = (uint8_t *)src; rmt_item32_t *pdest = dest; while (size < src_size && num < wanted_num) { for (int i = 0; i < 8; i++) { // MSB first if (*psrc & (1 << (7 - i))) { pdest->val = bit1.val; } else { pdest->val = bit0.val; } num++; pdest++; } size++; psrc++; } *translated_size = size; *item_num = num; } void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) { // Reserve channel rmt_channel_t channel = ADAFRUIT_RMT_CHANNEL_MAX; for (size_t i = 0; i < ADAFRUIT_RMT_CHANNEL_MAX; i++) { if (!rmt_reserved_channels[i]) { rmt_reserved_channels[i] = true; channel = i; break; } } if (channel == ADAFRUIT_RMT_CHANNEL_MAX) { // Ran out of channels! return; } #if defined(HAS_ESP_IDF_4) rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel); config.clk_div = 2; #else // Match default TX config from ESP-IDF version 3.4 rmt_config_t config = { .rmt_mode = RMT_MODE_TX, .channel = channel, .gpio_num = pin, .clk_div = 2, .mem_block_num = 1, .tx_config = { .carrier_freq_hz = 38000, .carrier_level = RMT_CARRIER_LEVEL_HIGH, .idle_level = RMT_IDLE_LEVEL_LOW, .carrier_duty_percent = 33, .carrier_en = false, .loop_en = false, .idle_output_en = true, } }; #endif rmt_config(&config); rmt_driver_install(config.channel, 0, 0); // Convert NS timings to ticks uint32_t counter_clk_hz = 0; #if defined(HAS_ESP_IDF_4) rmt_get_counter_clock(channel, &counter_clk_hz); #else // this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4 if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) { uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt; uint32_t div = div_cnt == 0 ? 256 : div_cnt; counter_clk_hz = REF_CLK_FREQ / (div); } else { uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt; uint32_t div = div_cnt == 0 ? 256 : div_cnt; counter_clk_hz = APB_CLK_FREQ / (div); } #endif // NS to tick converter float ratio = (float)counter_clk_hz / 1e9; if (is800KHz) { t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS); t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS); t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS); t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS); } else { t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS); t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS); t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS); t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS); } // Initialize automatic timing translator rmt_translator_init(config.channel, ws2812_rmt_adapter); // Write and wait to finish rmt_write_sample(config.channel, pixels, (size_t)numBytes, true); rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(100)); // Free channel again rmt_driver_uninstall(config.channel); rmt_reserved_channels[channel] = false; gpio_set_direction(pin, GPIO_MODE_OUTPUT); } #endif