From 378e3b0170b583f6c1fb13b05103b67e444b61c3 Mon Sep 17 00:00:00 2001 From: Sintal <61sima1bif@hft-stuttgart.de> Date: Thu, 17 Jun 2021 14:29:14 +0000 Subject: [PATCH] Update main.py --- main.py | 21 ++++++++++----------- 1 file changed, 10 insertions(+), 11 deletions(-) diff --git a/main.py b/main.py index aeb8c73..08a38b5 100644 --- a/main.py +++ b/main.py @@ -63,10 +63,8 @@ def extract_features(trainingDataDir, trainingDataSubDirs): def preprocessing_csv_data(): print("Reading Features... ") data = pd.read_csv(constants.FEATURES_CSV_NAME) - data.head() # Dropping unnecessary columns (Column Filename is dropped) data = data.drop(['filename'], axis=1) - data.head() return data @@ -109,10 +107,11 @@ def create_and_compile_model(X, hidden_layer_dimensions): def train_and_save_model(model, X_train, y_train, X_test, y_test): - logdir = constants.LOG_DIR_PATH - tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) + #logdir = constants.LOG_DIR_PATH + #tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) print("Start Training...") - history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test), callbacks=[tensorboard_callback]) + #history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test), callbacks=[tensorboard_callback]) + history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test)) # Saving the trained model to avoid re-training #model.save(constants.TRAINED_MODEL) return history @@ -155,14 +154,10 @@ def plot_model_loss(history): plt.legend(['Train', 'Test'], loc='upper right') plt.show() -def construct_and_apply_network(hidden_layer_dimensions): - data = preprocessing_csv_data() - target_labels, encoder = encode_labels(data) - X = normalize_data(data) +def construct_and_apply_network(hidden_layer_dimensions, data, target_labels, encoder, X): X_train, X_test, y_train, y_test = train_test_data_split(X, target_labels) model = create_and_compile_model(X, hidden_layer_dimensions) history = train_and_save_model(model, X_train, y_train, X_test, y_test) - history predict(model, X_test, y_test) accuracy = model_predict(model, X_test, y_test) #plot_model_accuracy(history) @@ -224,6 +219,10 @@ if __name__ == "__main__": else: extract_features(trainingDataDir, trainingDataSubDirs) + data = preprocessing_csv_data() + target_labels, encoder = encode_labels(data) + X = normalize_data(data) + max_accuracy = 0 neurons_increment_by = 8 start_neuron_value = 8 @@ -242,7 +241,7 @@ if __name__ == "__main__": row_counter += 1 hidden_layer_dimensions[i] = j start = time.time() - new_accuracy = construct_and_apply_network(hidden_layer_dimensions) + new_accuracy = construct_and_apply_network(hidden_layer_dimensions, data, target_labels, encoder, X) end = time.time() elapsed_time = end - start sheet.cell(row=(row_counter), column=1).value = hidden_layer_dimensions.__str__() -- GitLab