Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Mayer
CircularGreenSimCity
Commits
59634a67
Commit
59634a67
authored
Oct 27, 2023
by
Eric Duminil
Browse files
Updated script and diagrams
parent
e0609e3a
Changes
5
Show whitespace changes
Inline
Side-by-side
python_scripts/get_dwd_precipitation/Parse Niederschlag.ipynb
View file @
59634a67
...
...
@@ -21,7 +21,7 @@
{
"cell_type": "code",
"execution_count": 1,
"id": "
316a929e
",
"id": "
1cfa0188
",
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -30,7 +30,7 @@
},
{
"cell_type": "raw",
"id": "
daf94ab6
",
"id": "
c566f571
",
"metadata": {},
"source": [
"# Old version\n",
...
...
@@ -54,7 +54,7 @@
{
"cell_type": "code",
"execution_count": 2,
"id": "f
16392a3
",
"id": "f
ef5e23e
",
"metadata": {},
"outputs": [
{
...
...
@@ -276,35 +276,35 @@
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>
28
.000000</td>\n",
" <td>
13
.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>5
63.071429
</td>\n",
" <td>5
59.800000
</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>9
6.674589
</td>\n",
" <td>9
3.541524
</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>4
10.5
00000</td>\n",
" <td>4
32.1
00000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>
512.55
0000</td>\n",
" <td>
493.20
0000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>5
48
.900000</td>\n",
" <td>5
37
.900000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>6
14.4
00000</td>\n",
" <td>6
28.9
00000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>
807.1
00000</td>\n",
" <td>
744.4
00000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
...
...
@@ -312,14 +312,14 @@
],
"text/plain": [
" precipitation\n",
"count
28
.000000\n",
"mean 5
63.071429
\n",
"std 9
6.674589
\n",
"min 4
10.5
00000\n",
"25%
512.55
0000\n",
"50% 5
48
.900000\n",
"75% 6
14.4
00000\n",
"max
807.1
00000"
"count
13
.000000\n",
"mean 5
59.800000
\n",
"std 9
3.541524
\n",
"min 4
32.1
00000\n",
"25%
493.20
0000\n",
"50% 5
37
.900000\n",
"75% 6
28.9
00000\n",
"max
744.4
00000"
]
},
"execution_count": 8,
...
...
@@ -328,7 +328,7 @@
}
],
"source": [
"
yearly_values
.describe()"
"
df2[(df2.index.year >= 2010) & (df2.index.year < 2023)].resample('Y').sum()
.describe()"
]
},
{
...
...
@@ -349,7 +349,8 @@
}
],
"source": [
"yearly_values.plot.bar(title='Niederschlag in Würzburg [mm / Jahr]', ylim=(0, None));"
"yearly_values.plot.bar(title='Niederschlag in Würzburg [mm / Jahr]', ylim=(0, None));\n",
"plt.savefig('wuerzburg_yearly_precipitation.png', facecolor='w', bbox_inches='tight')"
]
},
{
...
...
@@ -372,7 +373,7 @@
"source": [
"yearly_values.boxplot()\n",
"plt.title(\"Niederschlag in Würzburg, zwischen 1996 & 2022 [mm / Jahr]\")\n",
"plt.savefig('wurzburg_yearly_precipitations_1996_2022.png', facecolor='w', bbox_inches='tight')"
"plt.savefig('wu
e
rzburg_yearly_precipitations_1996_2022.png', facecolor='w', bbox_inches='tight')"
]
},
{
...
...
@@ -1799,7 +1800,7 @@
},
{
"cell_type": "code",
"execution_count":
24
,
"execution_count":
19
,
"id": "fa12c1b9",
"metadata": {},
"outputs": [
...
...
@@ -1818,7 +1819,7 @@
"ax=sns.heatmap(df_precipitation, cmap='viridis_r', annot=True, fmt=\".0f\")\n",
"ax.invert_yaxis()\n",
"plt.title(\"Precipitation in Würzburg [mm / month]\");\n",
"plt.savefig('wurzburg_monthly_precipitation
s
.png', facecolor='w', bbox_inches='tight')"
"plt.savefig('wu
e
rzburg_monthly_precipitation.png', facecolor='w', bbox_inches='tight')"
]
},
{
...
...
@@ -1872,7 +1873,7 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAANCCAYAAADlR6opAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACD
X0lEQVR4nOzdeXhV5bk34CdkJgFkSjCggMShAopDtUdtAXGionXGoUqrPcc6oDi0TlXRtlittXiwk61Vj1SLtWJbW6dWQK0TYnHs0ULjAEiDloJJkwDJ+v7wkM9tGJLFsAO57+vaV9xrep+19sqO7N9+3zcnSZIkAAAAAAAAaJNO2S4AAAAAAABgSyRkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAWIOjjz46iouL41//+tdatznllFMiPz8//vGPf2xwe2+99Vbk5OTEHXfc0eZ9Fy1aFBMnToy5c+e2WDdx4sTIycnZ4Po2pRUrVsRXv/rV2HbbbSM3NzeGDRuW7ZLa5Ic//OEaX7eZM2dGTk5O3Hfffes9xpe+9KUYMGDAxi+unVh9LWbOnJlq/wEDBsSXvvSl5ufruudb6/XXX4+JEyfGW2+91WJdNl+PnJycmDhx4kY51o033hg5OTnx3HPPZSxvamqKHj16RE5OTrzxxhsZ61asWBGdO3eOY445pnnZ6veR999/P+67774Nei3X5uNtbKnuv//+OOmkk6KysjKKi4tjwIABccopp8Tf/va3NW7/xz/+Mf7jP/4jOnfuHL169YovfelLUV1d3WK7b3zjGzFmzJjo27dv5OTkZPwufNLf//73OOaYY2KbbbaJ0tLSOPjgg+PFF1/cWKe4wR5//PE4/fTTY5dddomSkpLo27dvfOELX4g5c+ascfsXX3wxDjrooCgtLY1tttkmjjnmmPj73/+esc2bb74ZF198cey1116xzTbbRI8ePWL//fdf43vvggULYsKECTF8+PDYZpttUv/dBQD4OCELAMAanHHGGVFfXx933333GtcvW7Yspk+fHmPGjIny8vINbm/bbbeNZ555Jg4//PA277to0aK45ppr1viB81e+8pV45plnNri+TelHP/pR/OQnP4krrrginnrqqbjrrruyXVKbrC1k4f/bc88945lnnok999wz1f7Tp0+PK6+8svn5uu751nr99dfjmmuuWWPIcuWVV8b06dNTH3tDPPPMM/GVr3xloxxr5MiRERExY8aMjOUvvfRSLF26NEpKSlqse+6556Kurq5534j//z6yzTbbxIEHHrhBr+XW7Prrr49///vfccUVV8TDDz8c3/rWt+Ivf/lL7LnnnvHaa69lbDtr1qwYPXp0lJeXx29+85u4+eab449//GOMGjUqGhoaMrb9/ve/Hx988EEceeSRUVBQsNb2lyxZEp/97GfjzTffjJ///Odx7733Rn19fYwYMaJFmJYtP/rRj+Ktt96K888/P/7whz/EzTffHNXV1fGZz3wmHn/88Yxt//d//zdGjBgRK1asiHvvvTd+/vOfx5tvvhmf/exnY8mSJc3bPfroo/H73/8+jj322PjVr34Vv/jFL2LHHXeM448/Pq699tqMY86bNy9+8YtfREFBQXz+85/fLOcMAGz98rJdAABAezR69OioqKiIn//853H22We3WH/PPfdEXV1dnHHGGRvUTmNjY6xatSoKCwvjM5/5zAYda0369esX/fr12+jH3ZheffXVKC4ujnPPPTfbpRARK1eujJycnMjL23j/VOjatesG3d977LHHRqulNQYNGrRZ2/u4jfk+sMcee8Q222wTM2fOjEsvvbR5+cyZM6OioiKGDx8eM2bMiK9+9asZ6yIiI2T5+PtIjx49Wl3jpriXNlRdXV0UFRVtkh5+v/vd76KsrCxj2YEHHhgDBgyI73//+/Gzn/2sefnXvva12GmnneK+++5rvj4DBw6M/fffP37+85/HWWed1bzthx9+GJ06ffT9yHWF0N/97ndjyZIl8fTTT0f//v0jIuKAAw6IQYMGxVVXXRXTpk1LdV7vvPNOlJWVRVFRUar9P+4HP/hBi2t02GGHRWVlZUyaNCkOPPDA5uVXXXVVFBYWxoMPPhhdu3aNiIi99tordtxxx7jxxhvj+uuvj4iIE088Mc4555yM13T06NHx/vvvx/XXXx+XXHJJFBYWRkTE5z73ueaA5oUXXoh77rlng88JAEBPFgCANcjNzY1x48bFnDlz4pVXXmmx/vbbb49tt902Ro8eHUuWLImzzz47dt111ygtLY2ysrI48MAD48knn8zYZ/WQYDfccEN861vfioEDB0ZhYWHMmDFjjcOFzZs3L7785S/HjjvuGJ07d46+ffvGEUcckVHPzJkz49Of/nRERHz5y1+OnJycjOGG1jRcWFNTU9xwww2xyy67RGFhYZSVlcVpp50WCxYsyNhuxIgRMWTIkJg9e3Z89rOfjc6dO8cOO+wQ3/nOd6KpqWm917C+vj4uu+yyGDhwYBQUFETfvn3jnHPOyRiCLScnJ372s59FXV1dc+3r6hWyuqZnnnkm9ttvv+YheW6//faIiPj9738fe+65Z3Tu3DmGDh0aDz/8cItjPPXUUzFq1Kjo0qVLdO7cOfbbb7/4/e9/n7HNHXfcETk5OTFjxow466yzolevXtGzZ8845phjYtGiRc3bDRgwIF577bWYNWtWc/2fHGZq5cqVccUVV0RFRUV07do1DjrooPV+q3zUqFGxyy67RJIkGcuTJInKysr19ngaMGBAjBkzJqZPnx677bZbFBUVxQ477BD//d//nbHd6mG87rrrrrjooouib9++UVhYGPPmzYuIaP5mfdeuXaNz586x//77x5/+9KcW7f3v//5vnHTSSVFeXh6FhYWx/fbbx2mnndb8jfw1DRf2pS99KUpLS+O1116LUaNGRUlJSfTu3TvOPffc+Pe//93ifFYPkbS+e/6FF16IE088MQYMGNB8f5x00knx9ttvNx/vjjvuiOOPPz4iPgoTPnnvrWm4sNbczx+/9g8//HDsueeeUVxcHLvsskv8/Oc/X+drttonhwtr7b24Jp06dYrPfe5z8ec//zlWrVrVvHzmzJkxYsSIGD58eIthv2bOnBm9e/eOwYMHN5/PmoanGjFiRIwYMSJjv7XdSwMGDGi+xp98fLL9d999N4455pjo2rVrdOvWLb74xS9m9FpY0zVa7ZO1rr52jz76aJx++unRu3fv6Ny5czQ0NESSJDFp0qTo379/FBUVxd577x2PPfZYi/Nqi0+GBxERFRUV0a9fv3j33Xebly1cuDBmz54dp556akYAtd9++8VOO+3UohfV6oBlfaZPnx4HHnhgc8AS8VHAecwxx8Tvfve7jHugLX7+859HeXl5jBs3Lh555JHUx4lY8zUqLS2NXXfdNeMarVq1Kh588ME49thjmwOWiIj+/fvHyJEjM65Rr1691hia7bPPPvHvf/87/vnPfzYva+21BABoC/+HAQCwFqeffnrk5OS0+HD09ddfj+effz7GjRsXubm5zR/gXH311fH73/8+br/99thhhx1ixIgRa5y34L//+7/j8ccfjxtvvDEeeuih2GWXXdbY/qJFi6Jnz57xne98Jx5++OH4wQ9+EHl5ebHvvvs2f0i/5557NgcM3/jGN+KZZ55Z73BDZ511VlxyySVx8MEHx29/+9v45je/GQ8//HDst99+LeZDWLx4cZxyyinxxS9+MX7729/G6NGj47LLLoupU6eu89olSRJHHXVU3HjjjXHqqafG73//+7jwwgvjzjvvjAMPPLD5w/dnnnkmPv/5z0dxcXFz7esLEBYvXhxf/vKX4ytf+Ur85je/iaFDh8bpp58e1157bVx22WXx9a9/PX79619HaWlpHHXUURkfRM+aNSsOPPDAWLZsWdx2221xzz33RJcuXeKII45Y47e8v/KVr0R+fn7cfffdccMNN8TMmTPji1/8YvP66dOnxw477BB77LFHc/2f/ID08ssvj7fffjt+9rOfxa233hp/+9vf4ogjjojGxsa1nuP5558fb7zxRotA46GHHor58+fHOeecs85rFBExd+7cmDBhQlxwwQUxffr02G+//eL888+PG2+8scW2l112Wbzzzjvx4x//uPnb+FOnTo1DDjkkunbtGnfeeWfce++90aNHjzj00EMz6nrppZfi05/+dDz77LNx7bXXxkMPPRTXXXddNDQ0xIoVK9ZZ48qVK+Pzn/98jBo1Kh544IE499xz4yc/+UmMHTt2rfus755/6623Yuedd47JkyfHI488Etdff32899578elPf7r5/j788MNj0qRJEfHRN+vXd++19n7++DW56KKL4oILLojf/OY3sdtuu8UZZ5wRTzzxxDqvx7qs715cm5EjR0ZNTU3Mnj07Ij4KWZ944okYPnx4DB8+PKqrq+P111+PiI/mY3nmmWdixIgRqXt6rOlemj59evM1fuaZZ+LPf/5zDB06NEpKSmL77bfP2P/oo4+OysrKuO+++2LixInxwAMPxKGHHhorV65MVU/ER+/l+fn5cdddd8V9990X+fn5ccUVV8QVV1wRhx12WPzmN7+Jr371q/GVr3wl3nzzzdTtrMnf//73ePvtt5tDq4iPeu9FROy2224ttt9tt92a17dFXV1dzJ8/f63HrKurazGXSWudddZZcc0118Qbb7wRhx12WFRUVMQ555wTf/7zn1sEwWksW7YsXnzxxYxrNH/+/Kirq1vr+cybNy/q6+vXedwZM2ZE79691xjsAABsVAkAAGs1fPjwpFevXsmKFSual1100UVJRCRvvvnmGvdZtWpVsnLlymTUqFHJ0Ucf3by8qqoqiYhk0KBBGcf7+Lrbb799rbWsWrUqWbFiRbLjjjsmF1xwQfPy2bNnr3Xfq6++Ovn4//L99a9/TSIiOfvsszO2e+6555KISC6//PKMc4+I5LnnnsvYdtddd00OPfTQtdaZJEny8MMPJxGR3HDDDRnLp02blkREcuuttzYvGzduXFJSUrLO432yphdeeKF52QcffJDk5uYmxcXFycKFC5uXz507N4mI5L//+7+bl33mM59JysrKkg8//LB52apVq5IhQ4Yk/fr1S5qampIkSZLbb799jdfphhtuSCIiee+995qXDR48OBk+fHiLWmfMmJFERPL5z38+Y/m9996bRETyzDPPZFyD/v37Nz9vbGxMdthhh+QLX/hCxr6jR49OBg0a1Fzn2vTv3z/JyclJ5s6dm7H84IMPTrp27ZrU1tZm1Pi5z30uY7va2tqkR48eyRFHHJGxvLGxMdl9992TffbZp3nZgQcemGyzzTZJdXX1WutZ3c6MGTMyzjkikptvvjlj229/+9tJRCRPPfVUxvmMGzeu+fm67vlPWrVqVVJTU5OUlJRktPWrX/2qRU0fr+3jr0db7uf+/fsnRUVFydtvv928rK6uLunRo0dy5plnrrfeiEiuvvrq5udtuRfXZPXvwaRJk5IkSZI5c+YkEZH87//+b5IkSVJeXp7ccsstSZIkyaxZs5KISH74wx9mnM/Hr/1qw4cPz7jv13Yvrcm5556b5OXlJX/4wx+al61+r/r4e1uSJMkvfvGLJCKSqVOnNi/75DVaW62rr91pp52Wsd0///nPpLCwMBk7dmzG8meeeSaJiDX+PqexcuXKZMSIEUnXrl2Td955p8U5ffw9YLX/+q//SgoKCtZ6zJKSkjW+HgsXLkwiIrnuuutarLv77ruTiEiefvrpdCfyMVVVVcl3vvOdZNiwYUlEJNtvv33y9a9/vcV7TVuccsopSV5eXsb7+p///OckIpJ77rmnxfaTJk1KIiJZtGjRWo/505/+dI3vLx/XlvcRAIB10ZMFAGAdzjjjjHj//ffjt7/9bUR8NITJ1KlT47Of/WzsuOOOzdv9+Mc/jj333DOKiooiLy8v8vPz409/+lP89a9/bXHMI488MvLz89fb9qpVq2LSpEmx6667RkFBQeTl5UVBQUH87W9/W+NxW2P1JNefHP5nn332iU996lMtek706dMn9tlnn4xlu+22W8bQS2uyegLjT7Zz/PHHR0lJyRqHnGqtbbfdNvbaa6/m5z169IiysrIYNmxYVFRUNC//1Kc+FRHRXGttbW0899xzcdxxx0VpaWnzdrm5uXHqqafGggULWgzjdeSRR2Y8X/2t6vWd/4Yeo1OnTnHuuefGgw8+GO+8805EfPTN7ocffjjOPvvsVvUyGDx4cOy+++4Zy04++eRYvnx5vPjiixnLjz322IznTz/9dPzzn/+McePGxapVq5ofTU1Ncdhhh8Xs2bOjtrY2/v3vf8esWbPihBNOiN69e6+3pjU55ZRTWtQY0XKy9taqqamJSy65JCorKyMvLy/y8vKitLQ0amtrU//etPV+HjZsWEYPjaKiothpp53adN98Utp7cbfddouePXs296qbOXNm9OnTJ3beeeeI+GiOitXXek3zsbTVJ++lT/rOd74Tt9xyS/z4xz+O0aNHt1j/yfvhhBNOiLy8vNT3w5pqevbZZ6OhoSFOOOGEjOWf+cxnWgwTl1aSJHHGGWfEk08+Gf/zP/8T2223XYtt1vZ7vCHzxaxr33Wta2pqyvhdX1tPuwEDBsQll1wSf/nLX+KNN96IM844I373u9/FsGHDYu+9925zvVdeeWX84he/iO9///sZ7+sbcj4PPfRQnHPOOXHcccfF+PHj21wTAEBbCVkAANbhuOOOi27dujUPT/SHP/wh/vGPf2RMeH/TTTfFWWedFfvuu2/8+te/jmeffTZmz54dhx12WNTV1bU45rbbbtuqti+88MK48sor46ijjorf/e538dxzz8Xs2bNj9913X+NxW+ODDz5Yaw0VFRXN61fr2bNni+0KCwvX2/4HH3wQeXl5LT54z8nJiT59+rRopy169OjRYllBQUGL5QUFBRERzUPKLF26NJIkWeu5r6774z55/qsnT27L9U97jNNPPz2Ki4vjxz/+cUR8NKxVcXFxnH766a1qt0+fPmtd9snz/OQ1+cc//hERH93/+fn5GY/rr78+kiSJf/7zn7F06dJobGxsnhS9rfLy8lpcn7XV2Fonn3xy3HLLLfGVr3wlHnnkkXj++edj9uzZ0bt37w36vWnL/Zz292Zd0t5HOTk5MXz48Pjzn/8cK1eujBkzZsTw4cOb1w8fPjxmzZoVSZLEjBkzok+fPmsdwrA11vX+NnXq1Lj88svjqquuyngP/bhP3rer75ENec/4ZE2rj1VeXt5i2zUta6skSeIrX/lKTJ06Ne644474whe+kLF+9Wu5pnP65z//ucb3uPXp3r175OTkrPWYEWt+71zt2muvzfg9HzRo0HrbXLp0afzrX/+K5cuXR05OTpvrvuaaa+Jb3/pWfPvb345zzz03Y936rlFOTk5ss802LdY98sgjccwxx8TBBx8cv/jFLzYosAIAaK289W8CANBxFRcXx0knnRQ//elP47333ouf//zn0aVLl+ZJsyM++uBwxIgR8aMf/Shj3w8//HCNx2zthz5Tp06N0047rXnuiNXef//9NX641BqrP7h67733WnwwvmjRoujVq1eq466pnVWrVsWSJUsyPphOkiQWL17cPHH55tS9e/fo1KlTvPfeey3WrZ63ZWOd/8bQrVu3GDduXPzsZz+Liy++OG6//fY4+eSTW/3aL168eK3LPvmB/SfvydXXYcqUKfGZz3xmjccvLy+PxsbGyM3NjQULFrSqpk9atWpVfPDBBxn1rK3G1li2bFk8+OCDcfXVV8ell17avLyhoSFj8uu2ao/3c1uMHDky7r///njuuefiySefjOuuu6553fDhw+P999+POXPmxLPPPhtHH310xr5FRUUt5pyJ+Oh9aE2/L2t7f3vsscfi9NNPjy996UtxzTXXrLXWxYsXR9++fZufr+keKSwsXGNNawtiPlnT6mOtDhM/2f6G9GZZHbDcfvvtcdttt61x3pwhQ4ZERMQrr7wSn//85zPWvfLKK83r26K4uDgqKyvjlVdeabHulVdeieLi4thhhx3Wuv9//dd/xZgxY5qfrw7xPukvf/lLTJs2LaZNmxZvvfVW7LbbbjF+/Pg46aSTWsyvsy7XXHNNTJw4MSZOnBiXX355i/WDBg2K4uLitZ5PZWVlFBUVZSx/5JFH4qijjorhw4fHr3/96+agHQBgU9OTBQBgPc4444xobGyM7373u/GHP/whTjzxxOjcuXPz+pycnBYfSL388svxzDPPbFC7azru73//+1i4cGHGsrb0rjjwwAMjIlpMXD979uz461//GqNGjdqQkputPs4n2/n1r38dtbW1G62dtigpKYl999037r///oxr1dTUFFOnTo1+/frFTjvt1ObjbmgPhXU577zz4v3334/jjjsu/vWvf7X4tve6vPbaa/HSSy9lLLv77rujS5cuseeee65z3/333z+22WabeP3112Pvvfde46OgoCCKi4tj+PDh8atf/ap5Uvm2+sUvftGixoiIESNGrHWftd3zOTk5kSRJi9+bn/3sZy2GP2rL7017vJ/bYvXwX9///vdj2bJlGdd28ODB0bNnz7juuuuivr6+xVBhAwYMiJdffjlj2ZtvvtliaL11mTt3bhx77LFx4IEHxq233rrObT95P9x7772xatWqjJrXVNPjjz8eNTU1rapn3333jcLCwpg2bVrG8meffXaDhnRLkiT+8z//M26//fb4yU9+El/+8pfXuF3fvn1jn332ialTp2bcl88++2y88cYbccwxx6Rq/+ijj47HH3883n333eZlH374Ydx///1x5JFHRl7e2r9jWVFRkfH7PXTo0OZ1b731Vlx11VWx8847x5577hn33XdfnHLKKfH666/HSy+9FJdcckmbApZvfvObMXHixPjGN74RV1999Rq3ycvLiyOOOCLuv//+jC8svPPOOzFjxowW1+jRRx+No446Kg444IB44IEH1hoSAQBsCnqyAACsx9577x277bZbTJ48uXmc/Y8bM2ZMfPOb34yrr746hg8fHm+88UZce+21MXDgwFi1alXqdseMGRN33HFH7LLLLrHbbrvFnDlz4rvf/W6LHiirv/H7i1/8Ij71qU9FaWlpVFRUZMxPstrOO+8c//Vf/xVTpkyJTp06xejRo+Ott96KK6+8Mrbbbru44IILUtf7cQcffHAceuihcckll8Ty5ctj//33j5dffjmuvvrq2GOPPeLUU0/dKO201XXXXRcHH3xwjBw5Mi6++OIoKCiIH/7wh/Hqq6/GPffck2pomaFDh8Yvf/nLmDZtWuywww5RVFSU8QHlhthpp53isMMOi4ceeigOOOCAFnOsrEtFRUUceeSRMXHixNh2221j6tSp8dhjj8X111+fERKuSWlpaUyZMiXGjRsX//znP+O4446LsrKyWLJkSbz00kuxZMmS5p5bN910UxxwwAGx7777xqWXXhqVlZXxj3/8I37729/GT37yk+jSpcta2ykoKIjvfe97UVNTE5/+9Kfj6aefjm9961sxevToOOCAA9a637ru+c997nPx3e9+N3r16hUDBgyIWbNmxW233daiB9Dq3gK33nprdOnSJYqKimLgwIFr7EHTXu/n1ho8eHCUlZXF9OnTo3fv3s3zFUV8FEx97nOfi+nTp0dEy/lYTj311PjiF78YZ599dhx77LHx9ttvxw033NDqOXiWL18en//856O4uDguvvjieOGFFzLW77rrrtG1a9fm5/fff3/k5eXFwQcfHK+99lpceeWVsfvuu2fMn3LqqafGlVdeGVdddVUMHz48Xn/99bjllluiW7duraqpR48eceGFF8Z1110X3bt3j6OPPjoWLFgQ11xzTWy77bbRqVPmdxFHjBjRPKTaupx33nlx2223xemnnx5Dhw6NZ599tnldYWFh7LHHHs3Pr7/++jj44IPj+OOPj7PPPjuqq6vj0ksvjSFDhrQIZ2bNmhVLliyJiIjGxsZ4++2347777ouIj3oirX4tLr744rjrrrvi8MMPj2uvvTYKCwvjO9/5TtTX18fEiRNbdW3W5I477oif/vSnccIJJ8T//M//xL777pv6WN/73vfiqquuisMOOywOP/zwjGsUERk956655pr49Kc/HWPGjIlLL7006uvr46qrropevXrFRRdd1LzdU089FUcddVT06dMnLr/88pg7d27GMT95j62+dn//+98jIuKFF15onqfruOOOS31uAEAHlgAAsF4333xzEhHJrrvu2mJdQ0NDcvHFFyd9+/ZNioqKkj333DN54IEHknHjxiX9+/dv3q6qqiqJiOS73/1ui2OsXnf77bc3L1u6dGlyxhlnJGVlZUnnzp2TAw44IHnyySeT4cOHJ8OHD8/Y/5577kl22WWXJD8/P4mI5Oqrr06SJEmuvvrq5JP/y9fY2Jhcf/31yU477ZTk5+cnvXr1Sr74xS8m7777bsZ2w4cPTwYPHtyi1k+e19rU1dUll1xySdK/f/8kPz8/2XbbbZOzzjorWbp0aYvjlZSUrPd466qpf//+yeGHH95ieUQk55xzTsayJ598MjnwwAOTkpKSpLi4OPnMZz6T/O53v8vY5vbbb08iIpk9e3bG8hkzZiQRkcyYMaN52VtvvZUccsghSZcuXZKIaL42q7f91a9+lXGMNb3W67qmd9xxRxIRyS9/+cs1rl+T1dfjvvvuSwYPHpwUFBQkAwYMSG666aY1ns8na1xt1qxZyeGHH5706NEjyc/PT/r27ZscfvjhLbZ//fXXk+OPPz7p2bNnUlBQkGy//fbJl770paS+vj6jnY9ft9Wv+8svv5yMGDEiKS4uTnr06JGcddZZSU1NTYvzGTduXMaytd3zCxYsSI499tike/fuSZcuXZLDDjssefXVV9d4jMmTJycDBw5McnNzM16TNb0erb2f13Yvrun3dk0+fi5J0rZ7cV1OOOGEJCKS4447rsW6yZMnJxGR9O3bt8W6pqam5IYbbkh22GGHpKioKNl7772Txx9/vMX5rO9+X9tjdf2r36vmzJmTHHHEEUlpaWnSpUuX5KSTTkr+8Y9/ZByzoaEh+frXv55st912SXFxcTJ8+PBk7ty5LV7jtV271ef1rW99K+nXr19SUFCQ7LbbbsmDDz6Y7L777snRRx+dse1ee+2V9OnTZ32XOOnfv/9az3NNv9+PPvpo8pnPfCYpKipKevTokZx22mktzjVJPrp31nf9Vps3b15y1FFHJV27dk06d+6cjBo1KpkzZ856a1+XxYsXJ6tWrdqgY6y2rnNZ08cTL7zwQjJq1Kikc+fOSdeuXZOjjjoqmTdvXsY2q++d1l6jtrQPANAaOUmynq/jAAAAWXPsscfGs88+G2+99Vbk5+e3ap8BAwbEkCFD4sEHH9zE1aX3pS99Ke67775WD/EEm1pVVVXssssucfXVVzfPE/Lhhx9Gjx49YvLkyXHOOedkuUIAANojw4UBAEA709DQEC+++GI8//zzMX369LjppptaHbAA6/fSSy/FPffcE/vtt1907do13njjjbjhhhuia9euGUNCPvHEE9G3b9/4z//8zyxWCwBAeyZkAQCAdua9995r/vD3zDPPjPHjx2e7JNiqlJSUxAsvvBC33XZb/Otf/4pu3brFiBEj4tvf/naUl5c3b3f44YfH4YcfnsVKAQBo7wwXBgAAAAAAkEKnbBcAAAAAAACwJRKyAAAAAAAApCBkAQAAAAAASMHE9xHR1NQUixYtii5dukROTk62ywEAAAAAALIoSZL48MMPo6KiIjp1Wnt/FSFLRCxatCi22267bJcBAAAAAAC0I++++27069dvreuFLBHRpUuXiPjoYnXt2jXL1QAAAAAAANm0fPny2G677Zrzg7URskQ0DxHWtWtXIQsAAAAAABARsd4pRkx8DwAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUshqyPLEE0/EEUccERUVFZGTkxMPPPDAWrc988wzIycnJyZPnpyxvKGhIcaPHx+9evWKkpKSOPLII2PBggWbtnAAAAAAAKDDy2rIUltbG7vvvnvccsst69zugQceiOeeey4qKiparJswYUJMnz49fvnLX8ZTTz0VNTU1MWbMmGhsbNxUZQMAAAAAAEReNhsfPXp0jB49ep3bLFy4MM4999x45JFH4vDDD89Yt2zZsrjtttvirrvuioMOOigiIqZOnRrbbbdd/PGPf4xDDz10k9UOAAAAAAB0bO16TpampqY49dRT42tf+1oMHjy4xfo5c+bEypUr45BDDmleVlFREUOGDImnn356c5YKAAAAAAB0MFntybI+119/feTl5cV55523xvWLFy+OgoKC6N69e8by8vLyWLx48VqP29DQEA0NDc3Ply9fvnEKBgAAAAAAOox225Nlzpw5cfPNN8cdd9wROTk5bdo3SZJ17nPddddFt27dmh/bbbfdhpYLAAAAAAB0MO02ZHnyySejuro6tt9++8jLy4u8vLx4++2346KLLooBAwZERESfPn1ixYoVsXTp0ox9q6uro7y8fK3Hvuyyy2LZsmXNj3fffXdTngoAAAAAALAVarchy6mnnhovv/xyzJ07t/lRUVERX/va1+KRRx6JiIi99tor8vPz47HHHmve77333otXX3019ttvv7Ueu7CwMLp27ZrxAAAAAAAAaIuszslSU1MT8+bNa35eVVUVc+fOjR49esT2228fPXv2zNg+Pz8/+vTpEzvvvHNERHTr1i3OOOOMuOiii6Jnz57Ro0ePuPjii2Po0KFx0EEHbdZzAQAAAAAAOpashiwvvPBCjBw5svn5hRdeGBER48aNizvuuKNVx/j+978feXl5ccIJJ0RdXV2MGjUq7rjjjsjNzd0UJQMAAAAAAERERE6SJEm2i8i25cuXR7du3WLZsmWGDgMAAAAAgA6utblBVnuyAAAAsPHUrWiM+UtqUu9fv7IxFiyti37di6Mof8NGBxjUuzSKC4wwAADA1k3IAgAAsJWYv6Qmxkx5KttlRETEg+MPiCF9u2W7DAAA2KSELAAAAFuJQb1L48HxB6Tef151TUyYNjcmjx0WlWWlG1wLAABs7YQsAAAAW4nigtyN0nuksqxULxQAAGiFTtkuAAAAAAAAYEskZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkEJWQ5YnnngijjjiiKioqIicnJx44IEHmtetXLkyLrnkkhg6dGiUlJRERUVFnHbaabFo0aKMYzQ0NMT48eOjV69eUVJSEkceeWQsWLBgM58JAAAAAADQ0WQ1ZKmtrY3dd989brnllhbr/v3vf8eLL74YV155Zbz44otx//33x5tvvhlHHnlkxnYTJkyI6dOnxy9/+ct46qmnoqamJsaMGRONjY2b6zQAAAAAAIAOKC+bjY8ePTpGjx69xnXdunWLxx57LGPZlClTYp999ol33nkntt9++1i2bFncdtttcdddd8VBBx0UERFTp06N7bbbLv74xz/GoYceusnPAQAAAAAA6Ji2qDlZli1bFjk5ObHNNttERMScOXNi5cqVccghhzRvU1FREUOGDImnn346S1UCAAAAAAAdQVZ7srRFfX19XHrppXHyySdH165dIyJi8eLFUVBQEN27d8/Ytry8PBYvXrzWYzU0NERDQ0Pz8+XLl2+aogEAAAAAgK3WFtGTZeXKlXHiiSdGU1NT/PCHP1zv9kmSRE5OzlrXX3fdddGtW7fmx3bbbbcxywUAAAAAADqAdh+yrFy5Mk444YSoqqqKxx57rLkXS0REnz59YsWKFbF06dKMfaqrq6O8vHytx7zsssti2bJlzY933313k9UPAAAAAABsndp1yLI6YPnb3/4Wf/zjH6Nnz54Z6/faa6/Iz8+Pxx57rHnZe++9F6+++mrst99+az1uYWFhdO3aNeMBAAAAAADQFlmdk6WmpibmzZvX/Lyqqirmzp0bPXr0iIqKijjuuOPixRdfjAcffDAaGxub51np0aNHFBQURLdu3eKMM86Iiy66KHr27Bk9evSIiy++OIYOHRoHHXRQtk4LAAAAAADoALIasrzwwgsxcuTI5ucXXnhhRESMGzcuJk6cGL/97W8jImLYsGEZ+82YMSNGjBgRERHf//73Iy8vL0444YSoq6uLUaNGxR133BG5ubmb5RwAAAAAAICOKashy4gRIyJJkrWuX9e61YqKimLKlCkxZcqUjVkaAAAAAADAOrXrOVkAAAAAAADaq6z2ZAEAYOOpW9EY85fUpN6/fmVjLFhaF/26F0dRfvqhVwf1Lo3iAkO3AgAAsPUTsgAAbCXmL6mJMVOeynYZ8eD4A2JI327ZLgMAAAA2OSELAMBWYlDv0nhw/AGp959XXRMTps2NyWOHRWVZ6QbVAQAAAB2BkAUAYCtRXJC7UXqQVJaV6okCAAAArWDiewAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFPKyXQAAALBx1K1ojPlLalLvX7+yMRYsrYt+3YujKD839XEG9S6N4oL0+wMAAGwphCwAALCVmL+kJsZMeSrbZcSD4w+IIX27ZbsMAACATU7IAgAAW4lBvUvjwfEHpN5/XnVNTJg2NyaPHRaVZaUbVAcAAJA9erlvPkIWAADYShQX5G6UHiSVZaV6ogAAwBZML/fNR8gCAAAAAABbEb3cNx8hCwAAAGxFDA8CAOjlvvkIWQAAAGArYngQAIDNR8gCAAAAWxHDgwAAbD5CFgAAANiKGB4EAGDz6ZTtAgAAAAAAALZEQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIIWshixPPPFEHHHEEVFRURE5OTnxwAMPZKxPkiQmTpwYFRUVUVxcHCNGjIjXXnstY5uGhoYYP3589OrVK0pKSuLII4+MBQsWbMazAAAAAAAAOqKshiy1tbWx++67xy233LLG9TfccEPcdNNNccstt8Ts2bOjT58+cfDBB8eHH37YvM2ECRNi+vTp8ctf/jKeeuqpqKmpiTFjxkRjY+PmOg0AAAAAAKADystm46NHj47Ro0evcV2SJDF58uS44oor4phjjomIiDvvvDPKy8vj7rvvjjPPPDOWLVsWt912W9x1111x0EEHRUTE1KlTY7vttos//vGPceihh262cwEAAAAAADqWdjsnS1VVVSxevDgOOeSQ5mWFhYUxfPjwePrppyMiYs6cObFy5cqMbSoqKmLIkCHN26xJQ0NDLF++POMBAAAAAADQFu02ZFm8eHFERJSXl2csLy8vb163ePHiKCgoiO7du691mzW57rrrolu3bs2P7bbbbiNXDwAAAAAAbO3abciyWk5OTsbzJElaLPuk9W1z2WWXxbJly5of77777kapFQAAAAAA6DjabcjSp0+fiIgWPVKqq6ube7f06dMnVqxYEUuXLl3rNmtSWFgYXbt2zXgAAAAAAAC0RbsNWQYOHBh9+vSJxx57rHnZihUrYtasWbHffvtFRMRee+0V+fn5Gdu899578eqrrzZvAwAAAAAAsCnkZbPxmpqamDdvXvPzqqqqmDt3bvTo0SO23377mDBhQkyaNCl23HHH2HHHHWPSpEnRuXPnOPnkkyMiolu3bnHGGWfERRddFD179owePXrExRdfHEOHDo2DDjooW6cFAAAAAAB0AFkNWV544YUYOXJk8/MLL7wwIiLGjRsXd9xxR3z961+Purq6OPvss2Pp0qWx7777xqOPPhpdunRp3uf73/9+5OXlxQknnBB1dXUxatSouOOOOyI3N3eznw8AAAAAANBxZDVkGTFiRCRJstb1OTk5MXHixJg4ceJatykqKoopU6bElClTNkGFAAAAAAAAa9Zu52QBAAAAAABoz4QsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUsjLdgEAAAAAbDx1Kxpj/pKa1PvXr2yMBUvrol/34ijKz019nEG9S6O4IP3+ALAlELIAAAAAbEXmL6mJMVOeynYZ8eD4A2JI327ZLgMANikhCwAAAMBWZFDv0nhw/AGp959XXRMTps2NyWOHRWVZ6QbVAQBbOyELAAAAwFakuCB3o/QgqSwr1RMFANbDxPcAAAAAAAApCFkAAAAAAABSMFwYAAAAAMBWpG5FY8xfUpN6//qVjbFgaV30614cRfm5qY8zqHdpFBek3x+2BEIWAAAAAICtyPwlNTFmylPZLiMeHH+AuZ3Y6glZAAAAAAC2IoN6l8aD4w9Ivf+86pqYMG1uTB47LCrLSjeoDtjaCVkAAAAAALYixQW5G6UHSWVZqZ4osB4mvgcAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAAp5LVmo5dffrnNB951110jL69VhwcAAAAAANjitCoFGTZsWOTk5ESSJK06aKdOneLNN9+MHXbYYYOKAwAAAAAAaK9a3dXkueeei969e693uyRJYsiQIRtUFAAAAAAAQHvXqpBl+PDhUVlZGdtss02rDvq5z30uiouLN6QuAAAAAACAdq1VE9/PmDGj1QFLRMQf/vCH2HbbbdPW1GzVqlXxjW98IwYOHBjFxcWxww47xLXXXhtNTU3N2yRJEhMnToyKioooLi6OESNGxGuvvbbBbQMAAAAAAKxLq0KWbLn++uvjxz/+cdxyyy3x17/+NW644Yb47ne/G1OmTGne5oYbboibbropbrnllpg9e3b06dMnDj744Pjwww+zWDkAAAAAALC1a/WcLKs1NjbGHXfcEX/605+iuro6o1dJRMTjjz++0Yp75pln4gtf+EIcfvjhERExYMCAuOeee+KFF16IiI96sUyePDmuuOKKOOaYYyIi4s4774zy8vK4++6748wzz9xotQAAAAAAAHxcm3uynH/++XH++edHY2NjDBkyJHbfffeMx8Z0wAEHxJ/+9Kd48803IyLipZdeiqeeeio+//nPR0REVVVVLF68OA455JDmfQoLC2P48OHx9NNPr/W4DQ0NsXz58owHAAAAAABAW7S5J8svf/nLuPfee5uDjk3pkksuiWXLlsUuu+wSubm50djYGN/+9rfjpJNOioiIxYsXR0REeXl5xn7l5eXx9ttvr/W41113XVxzzTWbrnAAAAAAAGCr1+aeLAUFBVFZWbkpamlh2rRpMXXq1Lj77rvjxRdfjDvvvDNuvPHGuPPOOzO2y8nJyXieJEmLZR932WWXxbJly5of77777iapHwAAAAAA2Hq1OWS56KKL4uabb44kSTZFPRm+9rWvxaWXXhonnnhiDB06NE499dS44IIL4rrrrouIiD59+kTE/+/Rslp1dXWL3i0fV1hYGF27ds14AAAAAAAAtEWrhgtbPan8ao8//ng89NBDMXjw4MjPz89Yd//992+04v79739Hp06ZOVBubm40NTVFRMTAgQOjT58+8dhjj8Uee+wRERErVqyIWbNmxfXXX7/R6gAAAAAAAPikVoUs3bp1y3h+9NFHb5JiPumII46Ib3/727H99tvH4MGD4y9/+UvcdNNNcfrpp0fER8OETZgwISZNmhQ77rhj7LjjjjFp0qTo3LlznHzyyZulRgAAAAAAoGNqVchy++23b+o61mjKlClx5ZVXxtlnnx3V1dVRUVERZ555Zlx11VXN23z961+Purq6OPvss2Pp0qWx7777xqOPPhpdunTJSs0AAACwIarer43ahlVZa39edU3Gz2woKcyLgb1KstY+AEBrtSpk+bgDDzww7r///thmm20yli9fvjyOOuqoePzxxzdWbdGlS5eYPHlyTJ48ea3b5OTkxMSJE2PixIkbrV0AAADIhqr3a2PkjTOzXUZEREyYNjer7c+4eISgBQBo99ocssycOTNWrFjRYnl9fX08+eSTG6UoAAAA6IhW92CZPHZYVJaVZqWG+pWNsWBpXfTrXhxF+bmbvf151TUxYdrcrPbmAYD2IJu9W9tDz9aILaN3a6tDlpdffrn5v19//fVYvHhx8/PGxsZ4+OGHo2/fvhu3OgAAAOiAKstKY0jfbuvfcBPZe0DWmgYAov30bs12z9aI9t+7tdUhy7BhwyInJydycnLiwAMPbLG+uLg4pkyZslGLAwAAAACAjibbvVuz3bM1Ysvp3drqkKWqqiqSJIkddtghnn/++ejdu3fzuoKCgigrK4vc3OxcbAAAAAAA2Npks3ernq2t0+qQpX///hER0dTUtMmKAQAAAAAA2FK0eeL7iIg333wzZs6cGdXV1S1Cl6uuumqjFAYAAAAAANCetTlk+elPfxpnnXVW9OrVK/r06RM5OTnN63JycoQsAAAAAABAh9DmkOVb3/pWfPvb345LLrlkU9QDAAAAAACwRWhzyLJ06dI4/vjjN0UtAAAAHV7V+7VR27AqK23Pq67J+JktJYV5MbBXSVZrAACA1mhzyHL88cfHo48+Gl/96lc3RT0AAAAdVtX7tTHyxpnZLiMmTJub7RJixsUjBC0AALR7bQ5ZKisr48orr4xnn302hg4dGvn5+RnrzzvvvI1WHAAAQEeyugfL5LHDorKsdLO3X7+yMRYsrYt+3YujKD93s7cf8VEvmgnT5matNw8AALRFm0OWW2+9NUpLS2PWrFkxa9asjHU5OTlCFgAAgA1UWVYaQ/p2y0rbew/ISrMAALBFanPIUlVVtSnqAAAAAAAA2KJ02pCdkySJJEk2Vi0AAAAAAABbjFQhy//8z//E0KFDo7i4OIqLi2O33XaLu+66a2PXBgAAAAAA0G61ebiwm266Ka688so499xzY//9948kSeLPf/5zfPWrX433338/Lrjggk1RJwAAAAAAQLvS5pBlypQp8aMf/ShOO+205mVf+MIXYvDgwTFx4kQhCwAAAAAA0CG0ebiw9957L/bbb78Wy/fbb7947733NkpRAAAAAAAA7V2bQ5bKysq49957WyyfNm1a7LjjjhulKAAAAAAAgPauzcOFXXPNNTF27Nh44oknYv/994+cnJx46qmn4k9/+tMawxcAAAAAAICtUZt7shx77LHx3HPPRa9eveKBBx6I+++/P3r16hXPP/98HH300ZuiRgAAAAAAgHanzT1ZIiL22muvmDp16sauBQAAAAAAYIuRKmSJiKiuro7q6upoamrKWL7bbrttcFEAAAAAAADtXZtDljlz5sS4cePir3/9ayRJkrEuJycnGhsbN1pxAAAAAAAA7VWbQ5Yvf/nLsdNOO8Vtt90W5eXlkZOTsynqAgAAAAAAaNfaHLJUVVXF/fffH5WVlZuiHgAAAAAAgC1Cp7buMGrUqHjppZc2RS0AAAAAAABbjDb3ZPnZz34W48aNi1dffTWGDBkS+fn5GeuPPPLIjVYcAAAAAABAe9XmkOXpp5+Op556Kh566KEW60x8DwAAAAAAdBRtHi7svPPOi1NPPTXee++9aGpqyngIWAAAAAAAgI6izSHLBx98EBdccEGUl5dvinoAAAAAAAC2CG0OWY455piYMWPGpqgFAAAAAABgi9HmOVl22mmnuOyyy+Kpp56KoUOHtpj4/rzzzttoxQHQenUrGmP+kprU+9evbIwFS+uiX/fiKMrPTX2cQb1Lo7gg/f4AAAAAsKVoc8jys5/9LEpLS2PWrFkxa9asjHU5OTlCFoAsmb+kJsZMeSrbZcSD4w+IIX27ZbsMAAAAANjk2hyyVFVVbYo6ANhAg3qXxoPjD0i9/7zqmpgwbW5MHjssKstKN6gOAAAAAOgI2hyyANA+FRfkbpQeJJVlpXqiAAAAAEArtHniewAAAAAAAPRkAQBoV6rer43ahlVZaXtedU3Gz2woKcyLgb1KstY+AAAAtIWQBQCgnah6vzZG3jgz22XEhGlzs9r+jItHCFoAAADYIrQ6ZLn11lvjyCOPjD59+mzKegAAOqzVPVgmjx0WlWWlm739+pWNsWBpXfTrXhxF+bmbvf151TUxYdrcrPXkAQAAgLZqdchyzz33xHnnnRe77757fOELX4gvfOELMXjw4E1ZGwBAh1RZVhpD+nbLStt7D8hKswAAALBFavXE9zNmzIj33nsvxo8fH3Pnzo399tsvBg0aFBdeeGHMnDkzmpqaNmWdAAAAAAAA7UqrQ5aIiO7du8cXv/jFuPfee2PJkiXxgx/8IOrr6+PUU0+N3r17x2mnnRb33Xdf1NbWbqp6AQAAAAAA2oU2hSwfV1BQEIcddlj88Ic/jHfffTceeeSRGDBgQHzzm9+Mm266aWPWCAAAAAAA0O60ek6W9dl7771j7733jmuvvTZWrly5sQ4LAAAAAADQLqXuybIu+fn5m+KwAAAAAAAA7cYmCVkAAAAAAAC2dkIWAAAAAACAFIQsAAAAAAAAKaSa+L6+vj5efvnlqK6ujqampox1Rx555EYpDAAAAAAAoD1rc8jy8MMPx2mnnRbvv/9+i3U5OTnR2Ni4UQoDAAAAAABoz9o8XNi5554bxx9/fLz33nvR1NSU8RCwAAAAAAAAHUWbQ5bq6uq48MILo7y8fFPUAwAAAAAAsEVoc8hy3HHHxcyZMzdBKQAAAAAAAFuONs/Jcsstt8Txxx8fTz75ZAwdOjTy8/Mz1p933nkbrTgAAAAAAID2qs0hy9133x2PPPJIFBcXx8yZMyMnJ6d5XU5OjpAFAAAAAADoENocsnzjG9+Ia6+9Ni699NLo1KnNo40BAAAAAABsFdqckqxYsSLGjh0rYAEAAAAAADq0Nicl48aNi2nTpm2KWgAAAAAAALYYbR4urLGxMW644YZ45JFHYrfddmsx8f1NN9200YoDAAAAAABor9ocsrzyyiuxxx57RETEq6++mrEuJydn41QFAAAAAADQzrU5ZJkxY8amqAMAAAAAAGCLYvZ6AAAAAACAFNrck6W+vj6mTJkSM2bMiOrq6mhqaspY/+KLL2604miduhWNMX9JTer961c2xoKlddGve3EU5eduUC2DepdGccGGHQMAAAAAALYEbQ5ZTj/99HjsscfiuOOOi3322cc8LO3A/CU1MWbKU9kuIyIiHhx/QAzp2y3bZQAAAAAAwCbX5pDl97//ffzhD3+I/ffff1PUQwqDepfGg+MPSL3/vOqamDBtbkweOywqy0o3uBYAAAAAAOgI2hyy9O3bN7p06bIpaiGl4oLcjdJ7pLKsVC8UAAAAAGgHqt6vjdqGVVlpe151TcbPbCgpzIuBvUqy1j60VptDlu9973txySWXxI9//OPo37//pqgJAAAAAKDDqnq/NkbeODPbZcSEaXOz2v6Mi0cIWmj32hyy7L333lFfXx877LBDdO7cOfLz8zPW//Of/9xoxQEAAAAAdDSre7BsjOH906hf2RgLltZFv+7FUZSfu9nbXz29QbZ68kBbtDlkOemkk2LhwoUxadKkKC8vN/E9AAAAAMAmkM3h/fcekJVmYYvT5pDl6aefjmeeeSZ23333TVEPAAAAAADAFqFTW3fYZZddoq6ublPUAgAAAAAAsMVoc8jyne98Jy666KKYOXNmfPDBB7F8+fKMBwAAAAAAQEfQ5uHCDjvssIiIGDVqVMbyJEkiJycnGhsbN05lAAAAAAAA7VibQ5YZM2ZsijoAAAAAAAC2KG0OWYYPH74p6gAAAAAAANiitGpOlpdffjmamppafdDXXnstVq1albooAAAAAACA9q5VIcsee+wRH3zwQasP+h//8R/xzjvvpC4KAAAAAACgvWvVcGFJksSVV14ZnTt3btVBV6xYsUFFAQBAR1X1fm3UNmSnV/i86pqMn9lSUpgXA3uVZLUGAACA1mhVyPK5z30u3njjjVYf9D/+4z+iuLg4dVEAANARVb1fGyNvnJntMmLCtLnZLiFmXDxC0AIAALR7rQpZZs6cuYnLAAAAVvdgmTx2WFSWlW729utXNsaCpXXRr3txFOXnbvb2Iz7qRTNh2tys9eYBAABoi1aFLAAAwOZTWVYaQ/p2y0rbew/ISrMAAABbpFZNfA8AAAAAAEAmIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQQl62CwAAAAA+0tBYH52KFkbV8jeiU1FptsvJiqrlNdGpaGE0NNZHRLdslwMAsE5CFgAAAGgnFtW+HSUDp8Tlz2e7kuwqGRixqHZY7BXl2S4FAGCdhCwAAADQTlSU9I/aqvFx89hhMaisY/ZkmV9dE+dPmxsVI/tnuxQAgPUSsgAAAEA7UZhbFE31fWNg151j154dc6ispvpl0VS/JApzi7JdCgDAepn4HgAAAAAAIIV2H7IsXLgwvvjFL0bPnj2jc+fOMWzYsJgzZ07z+iRJYuLEiVFRURHFxcUxYsSIeO2117JYMQAAAAAA0BG065Bl6dKlsf/++0d+fn489NBD8frrr8f3vve92GabbZq3ueGGG+Kmm26KW265JWbPnh19+vSJgw8+OD788MPsFQ4AAAAAAGz12vWcLNdff31st912cfvttzcvGzBgQPN/J0kSkydPjiuuuCKOOeaYiIi48847o7y8PO6+++4488wzN3fJkDV1Kxpj/pKa1PvXr2yMBUvrol/34ijKz019nEG9S6O4IP3+AAAAAABbinYdsvz2t7+NQw89NI4//viYNWtW9O3bN84+++z4z//8z4iIqKqqisWLF8chhxzSvE9hYWEMHz48nn766bWGLA0NDdHQ0ND8fPny5Zv2RGAzmL+kJsZMeSrbZcSD4w+IIX075gSdAAAAAEDH0q5Dlr///e/xox/9KC688MK4/PLL4/nnn4/zzjsvCgsL47TTTovFixdHRER5eXnGfuXl5fH222+v9bjXXXddXHPNNZu0dtjcBvUujQfHH5B6/3nVNTFh2tyYPHZYVJaVblAdAAAAAAAdQbsOWZqammLvvfeOSZMmRUTEHnvsEa+99lr86Ec/itNOO615u5ycnIz9kiRpsezjLrvssrjwwgubny9fvjy22267jVw9bF7FBbkbpQdJZVmpnigAAAAAAK3Qrie+33bbbWPXXXfNWPapT30q3nnnnYiI6NOnT0REc4+W1aqrq1v0bvm4wsLC6Nq1a8YDAAAAAACgLdp1yLL//vvHG2+8kbHszTffjP79+0dExMCBA6NPnz7x2GOPNa9fsWJFzJo1K/bbb7/NWisAAAAAANCxtOvhwi644ILYb7/9YtKkSXHCCSfE888/H7feemvceuutEfHRMGETJkyISZMmxY477hg77rhjTJo0KTp37hwnn3xylqsHAAAAAAC2Zu06ZPn0pz8d06dPj8suuyyuvfbaGDhwYEyePDlOOeWU5m2+/vWvR11dXZx99tmxdOnS2HfffePRRx+NLl26ZLFyAAAAAABga9euQ5aIiDFjxsSYMWPWuj4nJycmTpwYEydO3HxFAQAAAAAAHV67npMFAAAAAACgvRKyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkEK7n/geAKCjaGisj05FC6Nq+RvRqag02+VsdlXLa6JT0cJoaKyPiG7ZLgcAAADWS8gCANBOLKp9O0oGTonLn892JdlTMjBiUe2w2CvKs10KAAAArJeQBQCgnago6R+1VePj5rHDYlBZx+vJMr+6Js6fNjcqRvbPdikAAADQKkIWAIB2ojC3KJrq+8bArjvHrj073nBZTfXLoql+SRTmFmW7FAAAAGgVE98DAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBTysl0AH6l6vzZqG1Zlpe151TUZP7OlpDAvBvYqyWoNAACQTQ2N9dGpaGFULX8jOhWVZrucrKhaXhOdihZGQ2N9RHTLdjkAALBOQpZ2oOr92hh548xslxETps3Ndgkx4+IRghYAADqsRbVvR8nAKXH589muJLtKBkYsqh0We0V5tksBAIB1ErK0A6t7sEweOywqyzb/t9XqVzbGgqV10a97cRTl52729iM+6kUzYdrcrPXmAQCA9qCipH/UVo2Pm8cOi0FZ+LdBezC/uibOnzY3Kkb2z3YpAACwXkKWdqSyrDSG9M1Od/i9B2SlWQAA4GMKc4uiqb5vDOy6c+zas2MOldVUvyya6pdEYW5RtksBAID1MvE9AAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApJCX7QIAAAAAyFT1fm3UNqzKStvzqmsyfmZDSWFeDOxVkrX2t3R1Kxpj/pL0r1/9ysZYsLQu+nUvjqL83NTHGdS7NIoL0u8PsCUQsgAAAAC0I1Xv18bIG2dmu4yYMG1uVtufcfEIQUtK85fUxJgpT2W7jHhw/AExpG+3bJcBsEkJWQAAAADakdU9WCaPHRaVZaWbvf2N1YshrXnVNTFh2tys9eTZGgzqXRoPjj8g9f6rX4MNvQcH9d789y/A5iZkAQAAAGiHKstKs9YLYO8BWWmWjaS4IHej3DvZvAcBthQmvgcAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQQl62CwAAAAAAAP6/hsb66FS0MKqWvxGdikqzXU5WVC2viU5FC6OhsT4iumW7nLUSsgAAAAAAQDuyqPbtKBk4JS5/PtuVZFfJwIhFtcNiryjPdilrJWQBgK1E3YrGmL+kJvX+9SsbY8HSuujXvTiK8nNTH2dQ79IoLki/PwAAAHR0FSX9o7ZqfNw8dlgMKuuYPVnmV9fE+dPmRsXI/tkuZZ2ELACwlZi/pCbGTHkq22XEg+MPiCF92283XgAAAGjvCnOLoqm+bwzsunPs2rNj/hu7qX5ZNNUvicLcomyXsk5CFgDYSgzqXRoPjj8g9f7zqmtiwrS5MXnssKjcgG/JDOrdMb9hAwAAAHQ8QhYA2EoUF+RulB4klWWleqIAAAAAtEKnbBcAAAAAAACwJRKyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACCFvGwXAHyk6v3aqG1YlbX251XXZPzMhpLCvBjYqyRr7QMAAAAAtIWQBdqBqvdrY+SNM7NdRkRETJg2N6vtz7h4hKAFAAAAANgiCFmgHVjdg2Xy2GFRWVaalRrqVzbGgqV10a97cRTl52729udV18SEaXOz2psHAAAAAKAthCzQjlSWlcaQvt2y1v7eA7LWNAAAAADAFsfE9wAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJBCXrYLAAAAPtLQWB+dihZG1fI3olNRabbLyYqq5TXRqWhhNDTWR0S3bJcDAACwTkIWAABoJxbVvh0lA6fE5c9nu5LsKhkYsah2WOwV5dkuBQAAYJ2ELAAA0E5UlPSP2qrxcfPYYTGorGP2ZJlfXRPnT5sbFSP7Z7sUAACA9RKyAABAO1GYWxRN9X1jYNedY9eeHXOorKb6ZdFUvyQKc4uyXQoAAMB6mfgeAAAAAAAgBT1ZAAAAAADakYbG+uhUtDCqlr8RnYo63jCyVctrolPRwmhorI+IjtnDmy2HkAUAAAAA2pmq92ujtmFVVtqeV12T8TMbSgrzYmCvkqy1n22Lat+OkoFT4vLns11J9pQMjFhUOyz2ivJslwLrJGQBAAAAgHak6v3aGHnjzGyXEROmzc1q+zMuHtFhg5aKkv5RWzU+bh47LAaVdbyeLPOra+L8aXOjYmT/bJcC6yVkAQAAAIB2ZHUPlsljh0VlFj5gr1/ZGAuW1kW/7sVRlJ+72dufV10TE6bNzVpPnvagMLcomur7xsCuO8euPTvecFlN9cuiqX5JFOYWZbsUWC8hCwAAAAC0Q5VlpTGkb3Y+YN97QFaaBdjiCFkA2hFj7nbsMXcBAAAA2LIIWQDaCWPufqQjj7kLAAAAwJZFyALQThhz15i7AAAAAGxZhCwA7YwxdwEAAABgy9Ap2wUAAAAAAABsifRkAYB2pOr92qwNmTavuibjZzaUFOaZkwcAAADYYghZAKCdqHq/NkbeODPbZcSEaXOz2v6Mi0cIWgAAAIAtgpAFANqJ1T1YJo8dFpVlpZu9/fqVjbFgaV30614cRfm5m739edU1MWHa3Kz15AEAAABoKyELALQzlWWlMaRvt6y0vfeArDQLAAAAfEzdysaIiHh14bKstJ/tL2JGZHc487YQsgAAAAAAQDsy//8ChkvvfyXLlWRfSWH7jjHad3UAAAAAANDBHDK4T0REDCorjeIsDumdrSHNVyspzGv387ZuUSHLddddF5dffnmcf/75MXny5IiISJIkrrnmmrj11ltj6dKlse+++8YPfvCDGDx4cHaLBQAAAACAFHqUFMSJ+2yf7TKyOqT5lqJTtgtordmzZ8ett94au+22W8byG264IW666aa45ZZbYvbs2dGnT584+OCD48MPP8xSpQAAAAAAQEewRfRkqampiVNOOSV++tOfxre+9a3m5UmSxOTJk+OKK66IY445JiIi7rzzzigvL4+77747zjzzzGyVDAAAAACpNDTWR6eihVG1/I3oVJS9YXqypWp5TXQqWhgNjfUR4Rv0QPu2RYQs55xzThx++OFx0EEHZYQsVVVVsXjx4jjkkEOalxUWFsbw4cPj6aef3mJClo7+hzPCH08AAACA1RbVvh0lA6fE5c9nu5LsKRkYsah2WOwV5dkuBWCd2n3I8stf/jLmzJkTL7zwQot1ixcvjoiI8vLMN9vy8vJ4++2313rMhoaGaGhoaH6+fPnyjVRtOv5wfsQfTwAAAICIipL+UVs1Pm4eOywGZXHC6WyZX10T50+bGxUj+2e7FID1atchy7vvvhvnn39+PProo1FUVLTW7XJycjKeJ0nSYtnHXXfddXHNNddstDo3VEf/wxnhjycAAADAaoW5RdFU3zcGdt05du3Z8Ub8aKpfFk31S6Iwd+2fBwK0F+06ZJkzZ05UV1fHXnvt1byssbExnnjiibjlllvijTfeiIiPerRsu+22zdtUV1e36N3ycZdddllceOGFzc+XL18e22233SY4g9bp6H84I/zxBAAAAABgy9OuQ5ZRo0bFK6+8krHsy1/+cuyyyy5xySWXxA477BB9+vSJxx57LPbYY4+IiFixYkXMmjUrrr/++rUet7CwMAoLCzdp7QAAANBWdSsbIyLi1YXLslZD/crGWLC0Lvp1L46i/NzN3v686prN3iYAQFrtOmTp0qVLDBkyJGNZSUlJ9OzZs3n5hAkTYtKkSbHjjjvGjjvuGJMmTYrOnTvHySefnI2SAQAAILX5/xcwXHr/K+vZcutXUtiuP7IAAIiIdh6ytMbXv/71qKuri7PPPjuWLl0a++67bzz66KPRpUuXbJcGAAAAbXLI4D4RETGorDSKs9CLJOKjniQTps2NyWOHRWWW5g0tKcyLgb1KstI2AEBbbHEhy8yZMzOe5+TkxMSJE2PixIlZqQcAAAA2lh4lBXHiPttnu4yIiKgsK40hfTvmvKEAAK3VKdsFAAAAAAAAbImELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIIS/bBQAAAAAA/1/dysaIiHh14bKstF+/sjEWLK2Lft2Loyg/d7O3P6+6ZrO3CZCWkAUAAAAA2pH5/xcyXHr/K1muJLtKCn10CbR/3qkAAAAAoB05ZHCfiIgYVFYaxVnqSTJh2tyYPHZYVJaVbvb2Iz4KWAb2KslK2wBtIWQBAAAAgHakR0lBnLjP9tkuIyrLSmNI327ZLgOgXTPxPQAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIIS/bBQDwkYbG+uhUtDCqlr8RnYpKs13OZle1vCY6FS2Mhsb6iOiW7XIAAAAAYL2ELADtxKLat6Nk4JS4/PlsV5I9JQMjFtUOi72iPNulAAAAAMB6CVnagbqVjRER8erCZVlpv35lYyxYWhf9uhdHUX5uVmqYV12TlXahPako6R+1VePj5rHDYlBZx+vJMr+6Js6fNjcqRvbPdikAAAAA0CpClnZg/v8FDJfe/0qWK8m+kkK3JB1XYW5RNNX3jYFdd45de3a84bKa6pdFU/2SKMwtynYpAAAAANAqPtFuBw4Z3CciIgaVlUZxFnqSzKuuiQnT5sbkscOiMovfni8pzIuBvUqy1j4AAAAAALSFkKUd6FFSECfus322y4jKstIY0rfjfXseAAAAAADSELIAAAAAtCMNjfXRqWhhVC1/IzoVdbz5GquW10SnooXR0FgfEb4MCkD7JmQBAAAAaEcW1b4dJQOnxOXPZ7uS7CkZGLGodljsFeXZLgUA1knIAgAAANCOVJT0j9qq8XHz2GExKItzp2bL/OqaOH/a3KgY2T/bpQDAeglZAAAAANqRwtyiaKrvGwO77hy79ux4w2U11S+LpvolUZhblO1SAGC9OmW7AAAAAAAAgC2RkAUAAAAAACAFIQsAAAAAAEAK5mQBAGgn6lY2RkTEqwuXZaX9+pWNsWBpXfTrXhxF+bmbvf151TWbvU0AAADYEEIWAIB2Yv7/hQyX3v9KlivJrpJC/4sKAADAlsG/YKEdaGisj05FC6Nq+RvRqag02+VkRdXymuhUtDAaGusjolu2ywHIikMG94mIiEFlpVGcpZ4kE6bNjcljh0VlWXb+HpUU5sXAXiVZaRsAAADaSsgC7cCi2rejZOCUuPz5bFeSXSUDIxbVDou9ojzbpQBkRY+Sgjhxn+2zXUZUlpXGkL4CbwAAAFgfIQu0AxUl/aO2anzcPHZYDMrSN4ezbX51TZw/bW5UjOyf7VIAAAAAAFpFyALtQGFuUTTV942BXXeOXXt2zG8ON9Uvi6b6JVGYW5TtUgAAAAAAWkXIAgAA0E7UrWyMiIhXFy7LSvv1KxtjwdK66Ne9OIqyMDdUxEfzQwEAwJZCyAIAANBOzP+/gOHS+1/JciXZV1Lon6sAALR//q8VAACgnThkcJ+IiBhUVhrFWehJMq+6JiZMmxuTxw6LyizOFVhSmBcDe5VkrX0AAGgtIQsAAEA70aOkIE7cZ/tslxGVZaUxpG/HnCsQAADaolO2CwAAAAAAANgSCVkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIwcT3AAAAALAVqVvRGPOX1KTef151TcbPtAb1Lo3igtwNOgZAeydkAQAAAICtyPwlNTFmylMbfJwJ0+Zu0P4Pjj8ghvTttsF1ALRnQhYAAAAA2IoM6l0aD44/IPX+9SsbY8HSuujXvTiK8tP3RBnUuzT1vgBbCiELAAAAAGxFigtyN7gHyd4DNk4tAFs7E98DAAAAAACkoCcLAAAAQDtSt7IxIiJeXbgsK+1vrKGi0trQydYBYHMSsgAAAAC0I/P/L2S49P5XslxJdpUU+tgKgPbPXysAAACAduSQwX0iImJQWWkUZ6knyYRpc2Py2GFRWZadictLCvNiYK+SrLQN7YEebXq0seUQsgAAAAC0Iz1KCuLEfbbPdhlRWVa6wZOnA+no0fYRPdrYErhLAQAAAADaET3a9GhjyyFkAYB2oqGxPjoVLYyq5W9Ep6Ls/E9sNlUtr4lORQujobE+InxjEgAA6Lj0aIMth5AFANqJRbVvR8nAKXH589muJHtKBkYsqh0We0V5tksBAAAAWC8hCwC0ExUl/aO2anzcPHZYDMpSd+xsml9dE+dPmxsVI/tnuxQAAACAVhGyAEA7UZhbFE31fWNg151j154drzt2U/2yaKpfEoW5RdkuBQAAAKBVOmW7AAAAAAAAgC2RkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUTHwPAADtRN3KxoiIeHXhsqy0X7+yMRYsrYt+3YujKD83KzXMq67JSrsAAABpCFkAAKCdmP9/AcOl97+S5Uqyr6TQP1UAAID2z79cAACgnThkcJ+IiBhUVhrFWehJMq+6JiZMmxuTxw6LyrLSzd7+aiWFeTGwV0nW2gcAAGgtIQsAALQTPUoK4sR9ts92GVFZVhpD+nbLdhkAAADtnonvAQAAAAAAUhCyAAAAAADw/9q78/Cq6jt/4J8QyAIBZEd2DEKrCDSiCCKCyqLSEVdUrFqqrVVRtNUBHSVQldJFrTIurYpOi4JWqpSqLcXleRh3OlFGGR0YUKwwMEhRMCyG8/vDJj+uWMWbkJsbXq/nyRPuued77ufoN+eee9/ne75AGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkIaGmS4AAAAAqDnl2ytixfrNabdfvm5zyu90FbcpisK83GptAwCgrhOyAAAAQD2yYv3mGH374mpvZ+Lcsmq1XzBhcPTu2LzadQAA1GVCFgAAAKhHitsUxYIJg9Nuv3VHRby3sTw6tSiMgkbpj0QpblOUdlsAgGwhZAEAAIB6pDAvt9ojSPp3q5laAADqOxPfAwAAAAAApEHIAgAAAAAAkAYhCwAAAAAAQBqELAAAAAAAAGkQsgAAAAAAAKRByAIAAAAAAJCGOh2yTJ8+PQ477LBo2rRptG3bNsaMGRNvvfVWyjpJkkRpaWl06NAhCgsLY+jQofHGG29kqGIAAAAAAGBfUadDlueeey4uueSSePHFF2PhwoXxySefxIgRI2LLli1V6/zkJz+Jm2++OWbOnBmvvPJKtG/fPoYPHx4fffRRBisHAAAAAADqu4aZLuCLPPXUUymPZ82aFW3bto0lS5bEkCFDIkmSuPXWW+Paa6+NU045JSIiHnjggWjXrl08+OCD8b3vfS8TZQOkpXxHRURE/OdfN2Xk9bfuqIj3NpZHpxaFUdAot9Zff/m6zbX+mgAAAABQHXU6ZPmsTZs+/eKxZcuWERGxcuXKWLt2bYwYMaJqnfz8/Dj66KPj+eefF7IAWWXF30OGSfOWZriSzGqSn1VvTQAAAADsw7Lmm6wkSeLKK6+MwYMHR+/evSMiYu3atRER0a5du5R127VrF++8884/3Na2bdti27ZtVY8//PDDvVAxwFcz4uD2ERFR3LYoCjM0kmTi3LK4dWy/6NG2qNZfP+LTgKV76yYZeW0AAAAA+KqyJmS59NJL4/XXX4/Fixfv9lxOTk7K4yRJdlu2q+nTp8fUqVNrvEaA6mjZJC/OPLxLpsuIHm2LonfH5pkuAwAAAADqvDo98X2lCRMmxPz58+OZZ56JTp06VS1v3/7Tq74rR7RUWrdu3W6jW3Y1efLk2LRpU9XP6tWr907hAAAAAABAvVWnQ5YkSeLSSy+NefPmxdNPPx3du3dPeb579+7Rvn37WLhwYdWy7du3x3PPPReDBg36h9vNz8+PZs2apfwAAAAAAAB8FXX6dmGXXHJJPPjgg/H4449H06ZNq0asNG/ePAoLCyMnJycmTpwYN910Uxx44IFx4IEHxk033RSNGzeOs88+O8PVAwAAAAAA9VmdDlnuvPPOiIgYOnRoyvJZs2bF+eefHxERV199dZSXl8fFF18cGzdujAEDBsSf/vSnaNq0aS1XCwAAAAAA7EvqdMiSJMmXrpOTkxOlpaVRWlq69wsCAAAAAAD4uzo9JwsAAAAAAEBdJWQBAAAAAABIg5AFAAAAAAAgDUIWAAAAAACANAhZAAAAAAAA0iBkAQAAAAAASEPDTBcAAHyqfEdFRET85183ZeT1t+6oiPc2lkenFoVR0Ci31l9/+brNtf6aAAAAANUhZAGAOmLF30OGSfOWZriSzGqS7/QEAAAAyA6+xQCAOmLEwe0jIqK4bVEUZmgkycS5ZXHr2H7Ro21Rrb9+xKcBS/fWTTLy2gAAAABflZAFAOqIlk3y4szDu2S6jOjRtih6d2ye6TIAAAAA6jwhCwAA1BPl2ytixfr05zeqnBupunMkFbcpisK82h+RBwAAUNuELAAAUE+sWL85Rt++uNrbmTi3rFrtF0wYbEQcAACwTxCyAABAPVHcpigWTBicdvutOyrivY3l0alFYRRUY26o4jaZmdcJAACgtglZAACgnijMy632CJL+3WqmFgAAgH1Bg0wXAAAAAAAAkI2ELAAAAAAAAGlwuzAAAIB6onx7RaxYvznt9svXbU75XR3FbYqiMC/9uX0AACAbCFkAAADqiRXrN8fo2xdXezsT55ZVexsLJgyu9hxBAABQ1wlZAAAA6oniNkWxYMLgtNtv3VER720sj04tCqOgUfVGoRS3KapWewAAyAZCFgAAgHqiMC+32qNH+nermVoAAGBfYOJ7AAAAAACANBjJUg+Y3BIAAAAAAGqfkKUeMLll9ivfUREREf/5100Zq6Em77+djpoI+QAAAAAAapOQpR4wuWX2W/H3gGHSvKUZriTzmuQ7LAEAAAAA2cG3mfWAyS2z34iD20dERHHboijMwCiSiE9HkkycWxa3ju0XPdpmJixrkt8wurdukpHXBgAAAAD4qoQsUAe0bJIXZx7eJdNlREREj7ZFbvkGAAAAALAHGmS6AAAAAAAAgGwkZAEAAAAAAEiDkAUAAAAAACANQhYAAAAAAIA0CFkAAAAAAADSIGQBAAAAAABIg5AFAAAAAAAgDUIWAAAAAACANAhZAAAAAAAA0iBkAQAAAAAASIOQBQAAAAAAIA1CFgAAAAAAgDQIWQAAAAAAANIgZAEAAAAAAEiDkAUAAAAAACANDTNdAABQM8q3V8SK9ZvTbr983eaU3+kqblMUhXm51doGAAAAQDYQsgBAPbFi/eYYffviam9n4tyyarVfMGFw9O7YvNp1AAAAANR1QhYAqCeK2xTFggmD026/dUdFvLexPDq1KIyCRumPRCluU5R2WwAAAIBsImQBgHqiMC+32iNI+nermVoAAAAA9gUmvgcAAAAAAEiDkAUAAAAAACANQhYAAAAAAIA0CFkAAAAAAADSIGQBAAAAAABIg5AFAAAAAAAgDUIWAAAAAACANAhZAAAAAAAA0iBkAQAAAAAASEPDTBcA1Izy7RWxYv3mtNsvX7c55Xe6itsURWFebrW2AQAAAACQDYQsUE+sWL85Rt++uNrbmTi3rFrtF0wYHL07Nq92HQAAAAAAdZ2QBeqJ4jZFsWDC4LTbb91REe9tLI9OLQqjoFH6I1GK2xSl3RYAAAAAIJsIWaCeKMzLrfYIkv7daqYWAAAAAIB9gYnvAQAAAAAA0mAkCwAAAAAA1CPl2ytixfrNabdfvm5zyu90FbcpisK89KcmyAZCFgAAAAAAqEdWrN8co29fXO3tTJxbVq32CyYMrvYUB3WdkAUAAAAAAOqR4jZFsWDC4LTbb91REe9tLI9OLQqjoFH6I1GK2xSl3TZbCFkAAAAAAKAeKczLrfYIkv7daqaW+k7IAgBQT7jnLgAAANQuIQsAQD3hnrsAAABQu4QsAAD1hHvuAgAAQO0SsgAA1BPuuQsAAAC1S8gCAAAAUI+Ypw0Aao+QBaCe8EEKAACIME8bANQmIQtAPeGDFAAAEGGeNgCoTUIWgHrCBykAACDCPG0AUJuELAD1hA9SAAAAAFC7GmS6AAAAAAAAgGwkZAEAAAAAAEiDkAUAAAAAACANQhYAAAAAAIA0CFkAAAAAAADSIGQBAAAAAABIg5AFAAAAAAAgDUIWAAAAAACANAhZAAAAAAAA0iBkAQAAAAAASIOQBQAAAAAAIA1CFgAAAAAAgDQIWQAAAAAAANIgZAEAAAAAAEiDkAUAAAAAACANQhYAAAAAAIA0CFkAAAAAAADSIGQBAAAAAABIg5AFAAAAAAAgDUIWAAAAAACANAhZAAAAAAAA0iBkAQAAAAAASIOQBQAAAAAAIA0NM11ATbnjjjvipz/9aaxZsyYOPvjguPXWW+Ooo47KdFkAAAAAALWqfHtFrFi/Oe32y9dtTvmdruI2RVGYl1utbUBdVy9Clrlz58bEiRPjjjvuiCOPPDLuvvvuOP744+PNN9+MLl26ZLo8AAAAAIBas2L95hh9++Jqb2fi3LJqtV8wYXD07ti82nVAXZaTJEmS6SKqa8CAAVFSUhJ33nln1bKvf/3rMWbMmJg+ffqXtv/www+jefPmsWnTpmjWrNneLBUAAAAAYK+q7kiWrTsq4r2N5dGpRWEUNEp/JIqRLGSzPc0Nsn4ky/bt22PJkiUxadKklOUjRoyI559//nPbbNu2LbZt21b1eNOmTRHx6X80AAAAAIBs16VpTjVaN4yeLZtWu4YdW7fEjq3V3gxkRGVe8GXjVLI+ZPm///u/qKioiHbt2qUsb9euXaxdu/Zz20yfPj2mTp262/LOnTvvlRoBAAAAAIDs89FHH0Xz5v/4tndZH7JUyslJTWaTJNltWaXJkyfHlVdeWfV4586d8cEHH0SrVq3+YZv67MMPP4zOnTvH6tWr3S5tH6YfoA+gD6APoA+gDxChH6APoA+gD6APRHyaMXz00UfRoUOHL1wv60OW1q1bR25u7m6jVtatW7fb6JZK+fn5kZ+fn7Jsv/3221slZo1mzZrts38w/H/6AfoA+gD6APoA+gAR+gH6APoA+gD6wBeNYKnUoBbq2Kvy8vLi0EMPjYULF6YsX7hwYQwaNChDVQEAAAAAAPVd1o9kiYi48sor41vf+lb0798/Bg4cGL/85S/j3XffjYsuuijTpQEAAAAAAPVUvQhZxo4dGxs2bIhp06bFmjVronfv3vHEE09E165dM11aVsjPz48pU6bsdgs19i36AfoA+gD6APoA+gAR+gH6APoA+gD6wFeRkyRJkukiAAAAAAAAsk3Wz8kCAAAAAACQCUIWAAAAAACANAhZAAAAAAAA0iBkAf6hnJyceOyxxzJdBgAAGea8EAAAPp+QZR9w/vnnx5gxYzJdBhly/vnnR05Ozm4/y5cvz3Rp1ILK//8XXXTRbs9dfPHFkZOTE+eff37tF0ZGPP/885GbmxujRo3KdCnUEscAPst5IZX0hX2TcwHWrVsX3/ve96JLly6Rn58f7du3j5EjR8YLL7yQ6dKoZatXr47vfOc70aFDh8jLy4uuXbvG5ZdfHhs2bNij9s8++2zk5OTE3/72t71bKDWq8vPBj3/845Tljz32WOTk5GSoKmrTrt8TNmrUKNq1axfDhw+P++67L3bu3Jnp8rKWkAX2AaNGjYo1a9ak/HTv3j3TZVFLOnfuHHPmzIny8vKqZVu3bo2HHnoounTpUq1t79ixo7rlUYvuu+++mDBhQixevDjefffdam2roqLCCViW2JvHAACyS02eC5CdTj311HjttdfigQceiLfffjvmz58fQ4cOjQ8++CDTpVGL/ud//if69+8fb7/9djz00EOxfPnyuOuuu2LRokUxcOBA/aGeKygoiBkzZsTGjRszXQoZUvk94apVq+LJJ5+MYcOGxeWXXx6jR4+OTz75JNPlZSUhyz7mqaeeisGDB8d+++0XrVq1itGjR8eKFSuqnl+1alXk5OTEvHnzYtiwYdG4cePo27evq1qyXOUVSrv+5Obmxu9///s49NBDo6CgIA444ICYOnXqbgfTNWvWxPHHHx+FhYXRvXv3eOSRRzK0F6SrpKQkunTpEvPmzataNm/evOjcuXN84xvfqFq2p8eHhx9+OIYOHRoFBQXxm9/8plb3hfRt2bIlHn744fj+978fo0ePjvvvv7/qucqr0P7whz9E3759o6CgIAYMGBBLly6tWuf++++P/fbbLxYsWBAHHXRQ5OfnxzvvvJOBPeGrqqljwDHHHBOXXnppyrY3bNgQ+fn58fTTT+/9HaHGdevWLW699daUZf369YvS0tKqxzk5OXHPPffEySefHI0bN44DDzww5s+fX7uFstftSV8g+33RuUDl+/yuPu+q5htuuCHatm0bTZs2jQsuuCAmTZoU/fr12/vFUyP+9re/xeLFi2PGjBkxbNiw6Nq1axx++OExefLkOPHEEyMiYtOmTfHd73432rZtG82aNYtjjjkmXnvttaptlJaWRr9+/eLuu++Ozp07R+PGjeP00083miHLXHLJJZGXlxd/+tOf4uijj44uXbrE8ccfH3/+85/jr3/9a1x77bUREbFt27a4+uqro3PnzpGfnx8HHnhg3HvvvbFq1aoYNmxYRES0aNHC6Ogsc9xxx0X79u1j+vTp/3CdRx99NA4++ODIz8+Pbt26xc9//vOq5yZPnhxHHHHEbm369OkTU6ZM2Ss1U7Mqvyfs2LFjlJSUxDXXXBOPP/54PPnkk1XnB1/2fhARMX/+/Ojfv38UFBRE69at45RTTsnA3tQNQpZ9zJYtW+LKK6+MV155JRYtWhQNGjSIk08+eberka+99tr44Q9/GGVlZdGzZ88466yzJJn1zB//+Mc455xz4rLLLos333wz7r777rj//vvjxhtvTFnvuuuuq7ra6Zxzzomzzjorli1blqGqSde3v/3tmDVrVtXj++67L8aPH5+yzp4eH/75n/85Lrvssli2bFmMHDmyVuqn+ubOnRu9evWKXr16xTnnnBOzZs2KJElS1rnqqqviZz/7WbzyyivRtm3b+Kd/+qeU0Uoff/xxTJ8+Pe6555544403om3btrW9G6SpJo4BF1xwQTz44IOxbdu2qjazZ8+ODh06VH3Ipn6aOnVqnHHGGfH666/HCSecEOPGjXOFK2ShPTkX+CKzZ8+OG2+8MWbMmBFLliyJLl26xJ133rkXK6amFRUVRVFRUTz22GMp7+eVkiSJE088MdauXRtPPPFELFmyJEpKSuLYY49NOe4vX748Hn744fj9738fTz31VJSVlcUll1xSm7tCNXzwwQfxxz/+MS6++OIoLCxMea59+/Yxbty4mDt3biRJEueee27MmTMnbrvttli2bFncddddUVRUFJ07d45HH300IiLeeuutWLNmTfziF7/IxO6Qhtzc3Ljpppvi9ttvj/fee2+355csWRJnnHFGnHnmmbF06dIoLS2N6667rurL93HjxsVLL72UckHWG2+8EUuXLo1x48bV1m5Qw4455pjo27dvzJs3b4/eD/7whz/EKaecEieeeGL8x3/8RyxatCj69++f4b3IoIR677zzzktOOumkz31u3bp1SUQkS5cuTZIkSVauXJlERHLPPfdUrfPGG28kEZEsW7asNsqlhp133nlJbm5u0qRJk6qf0047LTnqqKOSm266KWXdX//618n+++9f9TgikosuuihlnQEDBiTf//73a6V2qq/y73/9+vVJfn5+snLlymTVqlVJQUFBsn79+uSkk05KzjvvvM9t+4+OD7feemst7gE1ZdCgQVX/73bs2JG0bt06WbhwYZIkSfLMM88kEZHMmTOnav0NGzYkhYWFydy5c5MkSZJZs2YlEZGUlZXVfvGkrSaPAVu3bk1atmxZ1SeSJEn69euXlJaW1sauUEN2PS/s2rVrcsstt6Q837dv32TKlClVjyMi+Zd/+Zeqx5s3b05ycnKSJ598shaqZW9Kpy/87ne/q7X6qHlfdC4wa9aspHnz5inr/+53v0t2/cpgwIABySWXXJKyzpFHHpn07dt3r9ZNzfrtb3+btGjRIikoKEgGDRqUTJ48OXnttdeSJEmSRYsWJc2aNUu2bt2a0qa4uDi5++67kyRJkilTpiS5ubnJ6tWrq55/8sknkwYNGiRr1qypvR0hbS+++OIXHtNvvvnmJCKSl156KYmIquPEZ1V+hti4cePeK5Yat+v7/xFHHJGMHz8+SZLUY/7ZZ5+dDB8+PKXdVVddlRx00EFVj/v06ZNMmzat6vHkyZOTww47bC9XT034ou+Jx44dm3z961/fo/eDgQMHJuPGjdvb5WYNI1n2MStWrIizzz47DjjggGjWrFnVvByfvR9vnz59qv69//77R8SnE+SRnYYNGxZlZWVVP7fddlssWbIkpk2bVnU1U1FRUVx44YWxZs2a+Pjjj6vaDhw4MGVbAwcONJIlC7Vu3TpOPPHEeOCBB2LWrFlx4oknRuvWrVPW2dPjwz59ZUKWeuutt+Lll1+OM888MyIiGjZsGGPHjo377rsvZb1d/95btmwZvXr1Svl7z8vLS3l/IHvUxDEgPz8/zjnnnKp+U1ZWFq+99ppbQ+wDdv27b9KkSTRt2tR5IWSZPT0X+LJtHH744SnLPvuYuu/UU0+N999/P+bPnx8jR46MZ599NkpKSuL++++PJUuWxObNm6NVq1YpnxNXrlyZcsV6ly5dolOnTlWPBw4cGDt37oy33norE7tEDUv+PsJt5cqVkZubG0cffXSGK2JvmTFjRjzwwAPx5ptvpixftmxZHHnkkSnLjjzyyPjv//7vqKioiIhPR7PMnj07Ij7tMw899JBRLPVAkiSRk5OzR+8HZWVlceyxx2a44rqjYaYLoHZ985vfjM6dO8evfvWr6NChQ+zcuTN69+4d27dvT1mvUaNGVf+uvA+vCY6zV5MmTaJHjx4py3bu3BlTp0793PslFhQUfOH2PntvZrLD+PHjq+ZT+Nd//dfdnt/T40OTJk1qpV5qzr333huffPJJdOzYsWpZkiTRqFGjL53scNe/98LCQn//WawmjgEXXHBB9OvXL957772477774thjj42uXbvW2j5Qsxo0aLDbrYJ2vUVgpV3PCyM+PS44L6xf9rQvkL2+7FxgT/vAZ88DPtuG7FBQUBDDhw+P4cOHx/XXXx8XXHBBTJkyJS6++OLYf//949lnn92tzWfn7NlVZb9wnpgdevToETk5OfHmm2/GmDFjdnv+v/7rv6JFixbRuHHj2i+OWjVkyJAYOXJkXHPNNSkXTlV+0b6rzx7vzz777Jg0aVL85S9/ifLy8li9enVVkE/2WrZsWXTv3j127tz5pe8Hn73d4L5OyLIP2bBhQyxbtizuvvvuOOqooyIiYvHixRmuikwpKSmJt956a7fw5bNefPHFOPfcc1Me7zpRMtlj1KhRVV+WfnYuFceH+uuTTz6Jf/u3f4uf//znMWLEiJTnTj311Jg9e3b07t07Ij79++7SpUtERGzcuDHefvvt+NrXvlbrNbN31MQx4JBDDon+/fvHr371q3jwwQfj9ttv3/uFs9e0adMm1qxZU/X4ww8/jJUrV2awIjJFX6jf9uRcoLi4OD766KPYsmVL1QU1ZWVlKev26tUrXn755fjWt75VtezVV1/d6/Wz9x100EHx2GOPRUlJSaxduzYaNmwY3bp1+4frv/vuu/H+++9Hhw4dIiLihRdeiAYNGkTPnj1rqWKqo1WrVjF8+PC444474oorrkj5onTt2rUxe/bsOPfcc+OQQw6JnTt3xnPPPRfHHXfcbtvJy8uLiKga2UB2mj59enzjG99I+fs96KCDdvss8Pzzz0fPnj0jNzc3IiI6deoUQ4YMidmzZ0d5eXkcd9xx0a5du1qtnZr19NNPx9KlS+OKK66ITp06fen7QZ8+fWLRokXx7W9/u3YLraOELPuQFi1aRKtWreKXv/xl7L///vHuu+/GpEmTMl0WGXL99dfH6NGjo3PnznH66adHgwYN4vXXX4+lS5fGDTfcULXeI488Ev3794/BgwfH7Nmz4+WXX4577703g5WTrtzc3KpbP1WeGFVyfKi/FixYEBs3bozvfOc70bx585TnTjvttLj33nvjlltuiYiIadOmRatWraJdu3Zx7bXXRuvWrT/36jayU00dAy644IK49NJLo3HjxnHyySfv9brZe4455pi4//7745vf/Ga0aNEirrvuut36BvsGfaF+25NzgUWLFkXjxo3jmmuuiQkTJsTLL79cNcFxpQkTJsSFF14Y/fv3j0GDBsXcuXPj9ddfjwMOOKAW94bq2LBhQ5x++ukxfvz46NOnTzRt2jReffXV+MlPfhInnXRSHHfccTFw4MAYM2ZMzJgxI3r16hXvv/9+PPHEEzFmzJiq2wYXFBTEeeedFz/72c/iww8/jMsuuyzOOOOMaN++fYb3kD01c+bMGDRoUIwcOTJuuOGG6N69e7zxxhtx1VVXRceOHePGG2+Mli1bxnnnnRfjx4+P2267Lfr27RvvvPNOrFu3Ls4444zo2rVr5OTkxIIFC+KEE06IwsLCKCoqyvSu8RX16dMnxo0bl3Lx1A9+8IM47LDD4kc/+lGMHTs2XnjhhZg5c2bccccdKW3HjRsXpaWlsX379qrPlGSHbdu2xdq1a6OioiL+93//N5566qmYPn16jB49Os4999xo0KDBl74fTJkyJY499tgoLi6OM888Mz755JN48skn4+qrr8707mWEOVn2ATt37oyGDRtGgwYNYs6cObFkyZLo3bt3XHHFFfHTn/400+WRISNHjowFCxbEwoUL47DDDosjjjgibr755t1u+zJ16tSYM2dO9OnTJx544IGYPXt2HHTQQRmqmupq1qxZNGvWbLfljg/117333hvHHXfcbl+qRHx69WpZWVn85S9/iYiIH//4x3H55ZfHoYceGmvWrIn58+dXXaFG/VATx4CzzjorGjZsGGefffaX3l6SuqfyvDAiYvLkyTFkyJAYPXp0nHDCCTFmzJgoLi7OcIXUFn1h37En5wKrVq2K3/zmN/HEE0/EIYccEg899FCUlpamrDtu3LiYPHly/PCHP4ySkpJYuXJlnH/++d4LskhRUVEMGDAgbrnllhgyZEj07t07rrvuurjwwgtj5syZkZOTE0888UQMGTIkxo8fHz179owzzzwzVq1alXKFeo8ePeKUU06JE044IUaMGBG9e/fe7ctX6rYDDzwwXn311SguLo6xY8dGcXFxfPe7341hw4bFCy+8EC1btoyIiDvvvDNOO+20uPjii+NrX/taXHjhhbFly5aIiOjYsWNMnTo1Jk2aFO3atau6LS3Z50c/+lHK7cBKSkri4Ycfjjlz5kTv3r3j+uuvj2nTpu02F+Ppp58eGzZsiI8//tjFeVnmqaeeiv333z+6desWo0aNimeeeSZuu+22ePzxxyM3N3eP3g+GDh0ajzzySMyfPz/69esXxxxzTLz00ksZ3rPMyUncRLXeGzVqVPTo0SNmzpyZ6VIAqIOeffbZGDZsWGzcuPEL77cNERGrV6+Obt26xSuvvBIlJSWZLoevyHkhlfQFasLw4cOjffv28etf/zrTpVBLSktL47HHHtvtdnIAsC9zu7B6bOPGjfH888/Hs88+GxdddFGmywEAstiOHTtizZo1MWnSpDjiiCMELFnGeSGV9AXS9fHHH8ddd90VI0eOjNzc3HjooYfiz3/+cyxcuDDTpQEAZJSQpR4bP358vPLKK/GDH/wgTjrppEyXAwBksX//93+PYcOGRc+ePeO3v/1tpsvhK3JeSCV9gXRV3jrkhhtuiG3btkWvXr3i0Ucf/dwJsQEA9iVuFwYAAAAAAJAGE98DAAAAAACkQcgCAAAAAACQBiELAAAAAABAGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkAYhCwAAAAAAQBqELAAAAAAAAGkQsgAAAAAAAKTh/wFvXdEKTuqM4A
AAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAANCCAYAAADlR6opAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACD
MklEQVR4nOzdeXhV5bk34CdkJgFkSjCggMShAopDtUdtAXGionXGoUqrPcc6oDi0TlXRtlittXiwk61Vj1SLtWJbW6dWQK0TYnHs0ULjAEiDloJJkwDJ+v7wkM9tGJLFsAO57+vaV9xrep+19sqO7N9+3zcnSZIkAAAAAAAAaJNO2S4AAAAAAABgSyRkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAWIOjjz46iouL41//+tdatznllFMiPz8//vGPf2xwe2+99Vbk5OTEHXfc0eZ9Fy1aFBMnToy5c+e2WDdx4sTIycnZ4Po2pRUrVsRXv/rV2HbbbSM3NzeGDRuW7ZLa5Ic//OEaX7eZM2dGTk5O3Hfffes9xpe+9KUYMGDAxi+unVh9LWbOnJlq/wEDBsSXvvSl5ufruudb6/XXX4+JEyfGW2+91WJdNl+PnJycmDhx4kY51o033hg5OTnx3HPPZSxvamqKHj16RE5OTrzxxhsZ61asWBGdO3eOY445pnnZ6veR999/P+67774Nei3X5uNtbKnuv//+OOmkk6KysjKKi4tjwIABccopp8Tf/va3NW7/xz/+Mf7jP/4jOnfuHL169YovfelLUV1d3WK7b3zjGzFmzJjo27dv5OTkZPwufNLf//73OOaYY2KbbbaJ0tLSOPjgg+PFF1/cWKe4wR5//PE4/fTTY5dddomSkpLo27dvfOELX4g5c+ascfsXX3wxDjrooCgtLY1tttkmjjnmmPj73/+esc2bb74ZF198cey1116xzTbbRI8ePWL//fdf43tvW18jAIDWELIAAKzBGWecEfX19XH33Xevcf2yZcti+vTpMWbMmCgvL9/g9rbddtt45pln4vDDD2/zvosWLYprrrlmjR84f+UrX4lnnnlmg+vblH70ox/FT37yk7jiiiviqaeeirvuuivbJbXJ2kIW/r8999wznnnmmdhzzz1T7T99+vS48sorm5+v655vrddffz2uueaaNYYsV155ZUyfPj31sTfEM888E1/5ylc2yrFGjhwZEREzZszIWP7SSy/F0qVLo6SkpMW65557Lurq6pr3jfj/7yPbbLNNHHjggRv0Wm7Nrr/++vj3v/8dV1xxRTz88MPxrW99K/7yl7/EnnvuGa+99lrGtrNmzYrRo0dHeXl5/OY3v4mbb745/vjHP8aoUaOioaEhY9vvf//78cEHH8SRRx4ZBQUFa21/yZIl8dnPfjbefPPN+PnPfx733ntv1NfXx4gRI1qEadnyox/9KN566604//zz4w9/+EPcfPPNUV1dHZ/5zGfi8ccfz9j2f//3f2PEiBGxYsWKuPfee+PnP/95vPnmm/HZz342lixZ0rzdo48+Gr///e/j2GOPjV/96lfxi1/8Inbcccc4/vjj49prr804ZlteIwCA1srLdgEAAO3R6NGjo6KiIn7+85/H2Wef3WL9PffcE3V1dXHGGWdsUDuNjY2xatWqKCwsjM985jMbdKw16devX/Tr12+jH3djevXVV6O4uDjOPffcbJdCRKxcuTJycnIiL2/j/VOha9euG3R/77HHHhutltYYNGjQZm3v4zbm+8Aee+wR22yzTcycOTMuvfTS5uUzZ86MioqKGD58eMyYMSO++tWvZqyLiIyQ5ePvIz169Gh1jZviXtpQdXV1UVRUtEl6+P3ud7+LsrKyjGUHHnhgDBgwIL7//e/Hz372s+blX/va12KnnXaK++67r/n6DBw4MPbff//4+c9/HmeddVbzth9++GF06vTR9yPXFUJ/97vfjSVLlsTTTz8d/fv3j4iIAw44IAYNGhRXXXVVTJs2LdV5vfPOO1FWVhZFRUWp9v+4H/zgBy2u0WGHHRaVlZUxadKkOPDAA5uXX3XVVVFYWBgPPvhgdO3aNSIi9tprr9hxxx3jxhtvjOuvvz4iIk488cQ455xzMl7T0aNHx/vvvx/XX399XHLJJVFYWBgRbXuNAABaS08WAIA1yM3NjXHjxsWcOXPilVdeabH+9ttvj2233TZGjx4dS5YsibPPPjt23XXXKC0tjbKysjjwwAPjySefzNhn9ZBgN9xwQ3zrW9+KgQMHRmFhYcyYMWONw4XNmzcvvvzlL8eOO+4YnTt3jr59+8YRRxyRUc/MmTPj05/+dEREfPnLX46cnJyM4YbWNFxYU1NT3HDDDbHLLrtEYWFhlJWVxWmnnRYLFizI2G7EiBExZMiQmD17dnz2s5+Nzp07xw477BDf+c53oqmpab3XsL6+Pi677LIYOHBgFBQURN++feOcc87JGIItJycnfvazn0VdXV1z7evqFbK6pmeeeSb222+/5uFebr/99oiI+P3vfx977rlndO7cOYYOHRoPP/xwi2M89dRTMWrUqOjSpUt07tw59ttvv/j973+fsc0dd9wROTk5MWPGjDjrrLOiV69e0bNnzzjmmGNi0aJFzdsNGDAgXnvttZg1a1Zz/Z8cZmrlypVxxRVXREVFRXTt2jUOOuig9X6rfNSoUbHLLrtEkiQZy5MkicrKyvX2eBowYECMGTMmpk+fHrvttlsUFRXFDjvsEP/93/+dsd3qYbzuuuuuuOiii6Jv375RWFgY8+bNi4ho/mZ9165do3PnzrH//vvHn/70pxbt/e///m+cdNJJUV5eHoWFhbH99tvHaaed1vyN/DUNF/alL30pSktL47XXXotRo0ZFSUlJ9O7dO84999z497//3eJ8Vg+RtL57/oUXXogTTzwxBgwY0Hx/nHTSSfH22283H++OO+6I448/PiI+ChM+ee+tabiw1tzPH7/2Dz/8cOy5555RXFwcu+yyS/z85z9f52u22ieHC2vtvbgmnTp1is997nPx5z//OVatWtW8fObMmTFixIgYPnx4i2G/Zs6cGb17947Bgwc3n8+ahqcaMWJEjBgxImO/td1LAwYMaL7Gn3x8sv133303jjnmmOjatWt069YtvvjFL2b0WljTNVrtk7WuvnaPPvponH766dG7d+/o3LlzNDQ0RJIkMWnSpOjfv38UFRXF3nvvHY899liL82qLT354HxFRUVER/fr1i3fffbd52cKFC2P27Nlx6qmnZgRQ++23X+y0004telGtDljWZ/r06XHggQc2BywRHwWcxxxzTPzud7/LuAfa4uc//3mUl5fHuHHj4pFHHkl9nIg1X6PS0tLYddddM67RqlWr4sEHH4xjjz22OWCJiOjfv3+MHDky4xr16tVrjaHZPvvsE//+97/jn//85zrbX9NrBADQFkIWAIC1OP300yMnJ6fFh6Ovv/56PP/88zFu3LjIzc1t/gDn6quvjt///vdx++23xw477BAjRoxY47wF//3f/x2PP/543HjjjfHQQw/FLrvsssb2Fy1aFD179ozvfOc78fDDD8cPfvCDyMvLi3333bf5Q/o999yzOWD4xje+Ec8888x6hxs666yz4pJLLomDDz44fvvb38Y3v/nNePjhh2O//fZrMR/C4sWL45RTTokvfvGL8dvf/jZGjx4dl112WUydOnWd1y5JkjjqqKPixhtvjFNPPTV+//vfx4UXXhh33nlnHHjggc0fvj/zzDPx+c9/PoqLi5trX1+AsHjx4vjyl78cX/nKV+I3v/lNDB06NE4//fS49tpr47LLLouvf/3r8etf/zpKS0vjqKOOyvggetasWXHggQfGsmXL4rbbbot77rknunTpEkccccQav+X9la98JfLz8+Puu++OG264IWbOnBlf/OIXm9dPnz49dthhh9hjjz2a6//kB6SXX355vP322/Gzn/0sbr311vjb3/4WRxxxRDQ2Nq71HM8///x44403WgQaDz30UMyfPz/OOeecdV6jiIi5c+fGhAkT4oILLojp06fHfvvtF+eff37ceOONLba97LLL4p133okf//jHzd/0njp1ahxyyCHRtWvXuPPOO+Pee++NHj16xKGHHppR10svvRSf/vSn49lnn41rr702HnroobjuuuuioaEhVqxYsc4aV65cGZ///Odj1KhR8cADD8S5554bP/nJT2Ls2LFr3Wd99/xbb70VO++8c0yePDkeeeSRuP766+O9996LT3/608339+GHHx6TJk2KiI++Wb++e6+19/PHr8lFF10UF1xwQfzmN7+J3XbbLc4444x44okn1nk91mV99+LajBw5MmpqamL27NkR8VHI+sQTT8Tw4cNj+PDhUV1dHa+//npEfDQfyzPPPBMjRoxI3dNjTffS9OnTm6/xM888E3/+859j6NChUVJSEttvv33G/kcffXRUVlbGfffdFxMnTowHHnggDj300Fi5cmWqeiI+ei/Pz8+Pu+66K+67777Iz8+PK664Iq644oo47LDD4je/+U189atfja985Svx5ptvpm5nTf7+97/H22+/3RxaRXzUey8iYrfddmux/W677da8vi3q6upi/vz5az1mXV1di7lMWuuss86Ka665Jt5444047LDDoqKiIs4555z485//3CIITmPZsmXx4osvZlyj+fPnR11d3VrPZ968eVFfX7/O486YMSN69+69xmDl49b0GgEAtEkCAMBaDR8+POnVq1eyYsWK5mUXXXRREhHJm2++ucZ9Vq1alaxcuTIZNWpUcvTRRzcvr6qqSiIiGTRoUMbxPr7u9ttvX2stq1atSlasWJHsuOOOyQUXXNC8fPbs2Wvd9+qrr04+/r98f/3rX5OISM4+++yM7Z577rkkIpLLL78849wjInnuuecytt11112TQw89dK11JkmSPPzww0lEJDfccEPG8mnTpiURkdx6663Ny8aNG5eUlJSs83ifrOmFF15oXvbBBx8kubm5SXFxcbJw4cLm5XPnzk0iIvnv//7v5mWf+cxnkrKysuTDDz9sXrZq1apkyJAhSb9+/ZKmpqYkSZLk9ttvX+N1uuGGG5KISN57773mZYMHD06GDx/eotYZM2YkEZF8/vOfz1h+7733JhGRPPPMMxnXoH///s3PGxsbkx122CH5whe+kLHv6NGjk0GDBjXXuTb9+/dPcnJykrlz52YsP/jgg5OuXbsmtbW1GTV+7nOfy9iutrY26dGjR3LEEUdkLG9sbEx23333ZJ999mleduCBBybbbLNNUl1dvdZ6VrczY8aMjHOOiOTmm2/O2Pbb3/52EhHJU089lXE+48aNa36+rnv+k1atWpXU1NQkJSUlGW396le/alHTx2v7+OvRlvu5f//+SVFRUfL22283L6urq0t69OiRnHnmmeutNyKSq6++uvl5W+7FNVn9ezBp0qQkSZJkzpw5SUQk//u//5skSZKUl5cnt9xyS5IkSTJr1qwkIpIf/vCHGefz8Wu/2vDhwzPu+7XdS2ty7rnnJnl5eckf/vCH5mWr36s+/t6WJEnyi1/8IomIZOrUqc3LPnmN1lbr6mt32mmnZWz3z3/+MyksLEzGjh2bsfyZZ55JImKNv89prFy5MhkxYkTStWvX5J133mlxTh9/D1jtv/7rv5KCgoK1HrOkpGSNr8fChQuTiEiuu+66FuvuvvvuJCKSp59+Ot2JfExVVVXyne98Jxk2bFgSEcn222+ffP3rX2/xXtMWp5xySpKXl5fxvv7nP/85iYjknnvuabH9pEmTkohIFi1atNZj/vSnP13j+8snre01AgBoCz1ZAADW4Ywzzoj3338/fvvb30bER0OYTJ06NT772c/Gjjvu2Lzdj3/849hzzz2jqKgo8vLyIj8/P/70pz/FX//61xbHPPLIIyM/P3+9ba9atSomTZoUu+66axQUFEReXl4UFBTE3/72tzUetzVWT3L9yeF/9tlnn/jUpz7VoudEnz59Yp999slYtttuu2UMvbQmqycw/mQ7xx9/fJSUlKxxyKnW2nbbbWOvvfZqft6jR48oKyuLYcOGRUVFRfPyT33qUxERzbXW1tbGc889F8cdd1yUlpY2b5ebmxunnnpqLFiwoMUwXkceeWTG89Xfql7f+W/oMTp16hTnnntuPPjgg/HOO+9ExEff7H744Yfj7LPPblUvg8GDB8fuu++esezkk0+O5cuXx4svvpix/Nhjj814/vTTT8c///nPGDduXKxatar50dTUFIcddljMnj07amtr49///nfMmjUrTjjhhOjdu/d6a1qTU045pUWNES0na2+tmpqauOSSS6KysjLy8vIiLy8vSktLo7a2NvXvTVvv52HDhmX00CgqKoqddtqpTffNJ6W9F3fbbbfo2bNnc6+6mTNnRp8+fWLnnXeOiIjPfe5zzdd6TfOxtNUn76VP+s53vhO33HJL/PjHP47Ro0e3WP/J++GEE06IvLy81PfDmmp69tlno6GhIU444YSM5Z/5zGdaDBOXVpIkccYZZ8STTz4Z//M//xPbbbddi23W9nu8IfPFrGvfda1ramrK+F1fW0+7AQMGxCWXXBJ/+ctf4o033ogzzjgjfve738WwYcNi7733bnO9V155ZfziF7+I73//+xnv6xtyPg899FCcc845cdxxx8X48ePXun9rXiMAgNYQsgAArMNxxx0X3bp1ax6e6A9/+EP84x//yJjw/qabboqzzjor9t133/j1r38dzz77bMyePTsOO+ywqKura3HMbbfdtlVtX3jhhXHllVfGUUcdFb/73e/iueeei9mzZ8fuu+++xuO2xgcffLDWGioqKprXr9azZ88W2xUWFq63/Q8++CDy8vJafPCek5MTffr0adFOW/To0aPFsoKCghbLCwoKIiKah5RZunRpJEmy1nNfXffHffL8V0+e3Jbrn/YYp59+ehQXF8ePf/zjiPhoWKvi4uI4/fTTW9Vunz591rrsk+f5yWvyj3/8IyI+uv/z8/MzHtdff30kSRL//Oc/Y+nSpdHY2Ng8KXpb5eXltbg+a6uxtU4++eS45ZZb4itf+Uo88sgj8fzzz8fs2bOjd+/eG/R705b7Oe3vzbqkvY9ycnJi+PDh8ec//zlWrlwZM2bMiOHDhzevHz58eMyaNSuSJIkZM2ZEnz591jqEYWus6/1t6tSpcfnll8dVV12V8R76cZ+8b1ffIxvynvHJmlYfq7y8vMW2a1rWVkmSxFe+8pWYOnVq3HHHHfGFL3whY/3q13JN5/TPf/5zje9x69O9e/fIyclZ6zEj1vzeudq1116b8Xs+aNCg9ba5dOnS+Ne//hXLly+PnJycNtd9zTXXxLe+9a349re/Heeee27GuvVdo5ycnNhmm21arHvkkUfimGOOiYMPPjh+8YtfrDWIWd9rBADQFnnr3wQAoOMqLi6Ok046KX7605/Ge++9Fz//+c+jS5cuzZNmR3z0weGIESPiRz/6Uca+H3744RqP2dpvKU+dOjVOO+205rkjVnv//ffX+OFSa6z+4Oq9995r8cH4okWLolevXqmOu6Z2Vq1aFUuWLMn4YDpJkli8eHHzxOWbU/fu3aNTp07x3nvvtVi3et6WjXX+G0O3bt1i3Lhx8bOf/SwuvvjiuP322+Pkk09u9Wu/ePHitS775Af2n7wnV1+HKVOmxGc+85k1Hr+8vDwaGxsjNzc3FixY0KqaPmnVqlXxwQcfZNSzthpbY9myZfHggw/G1VdfHZdeemnz8oaGhozJr9uqPd7PbTFy5Mi4//7747nnnosnn3wyrrvuuuZ1w4cPj/fffz/mzJkTzz77bBx99NEZ+xYVFbWYcybio/ehNf2+rO397bHHHovTTz89vvSlL8U111yz1loXL14cffv2bX6+pnuksLBwjTWtLYj5ZE2rj7U6TPxk+xvSm2X1h/e333573HbbbWucN2fIkCEREfHKK6/E5z//+Yx1r7zySvP6tiguLo7Kysp45ZVXWqx75ZVXori4OHbYYYe17v9f//VfMWbMmObnq0O8T/rLX/4S06ZNi2nTpsVbb70Vu+22W4wfPz5OOumkFvPrrMs111wTEydOjIkTJ8bll1/eYv2gQYOiuLh4redTWVkZRUVFGcsfeeSROOqoo2L48OHx61//ujlo/6TWvEYAAG2hJwsAwHqcccYZ0djYGN/97nfjD3/4Q5x44onRuXPn5vU5OTktPpB6+eWX45lnntmgdtd03N///vexcOHCjGVt6V1x4IEHRkS0mLh+9uzZ8de//jVGjRq1ISU3W32cT7bz61//OmprazdaO21RUlIS++67b9x///0Z16qpqSmmTp0a/fr1i5122qnNx93QHgrrct5558X7778fxx13XPzrX/9q8W3vdXnttdfipZdeylh29913R5cuXWLPPfdc5777779/bLPNNvH666/H3nvvvcZHQUFBFBcXx/Dhw+NXv/pV86TybfWLX/yiRY0RESNGjFjrPmu753NyciJJkha/Nz/72c9aDH/Ult+b9ng/t8Xq4b++//3vx7JlyzKu7eDBg6Nnz55x3XXXRX19fYuhwgYMGBAvv/xyxrI333yzxdB66zJ37tw49thj48ADD4xbb711ndt+8n649957Y9WqVRk1r6mmxx9/PGpqalpVz7777huFhYUxbdq0jOXPPvvsBg3pliRJ/Od//mfcfvvt8ZOf/CS+/OUvr3G7vn37xj777BNTp07NuC+fffbZeOONN+KYY45J1f7RRx8djz/+eLz77rvNyz788MO4//7748gjj4y8vLV/x7KioiLj93vo0KHN695666246qqrYuedd44999wz7rvvvjjllFPi9ddfj5deeikuueSSNgUs3/zmN2PixInxjW98I66++uo1bpOXlxdHHHFE3H///RlfWHjnnXdixowZLa7Ro48+GkcddVQccMAB8cADD6w1JGrtawQA0BZ6sgAArMfee+8du+22W0yePLl5DPePGzNmTHzzm9+Mq6++OoYPHx5vvPFGXHvttTFw4MBYtWpV6nbHjBkTd9xxR+yyyy6x2267xZw5c+K73/1uix4oq7/x+4tf/CI+9alPRWlpaVRUVGTMT7LazjvvHP/1X/8VU6ZMiU6dOsXo0aPjrbfeiiuvvDK22267uOCCC1LX+3EHH3xwHHrooXHJJZfE8uXLY//994+XX345rr766thjjz3i1FNP3SjttNV1110XBx98cIwcOTIuvvjiKCgoiB/+8Ifx6quvxj333JNqLoShQ4fGL3/5y5g2bVrssMMOUVRUlPEB5YbYaaed4rDDDouHHnooDjjggBZzrKxLRUVFHHnkkTFx4sTYdtttY+rUqfHYY4/F9ddfnxESrklpaWlMmTIlxo0bF//85z/juOOOi7KysliyZEm89NJLsWTJkuaeWzfddFMccMABse+++8all14alZWV8Y9//CN++9vfxk9+8pPo0qXLWtspKCiI733ve1FTUxOf/vSn4+mnn45vfetbMXr06DjggAPWut+67vnPfe5z8d3vfjd69eoVAwYMiFmzZsVtt93WogfQ6t4Ct956a3Tp0iWKiopi4MCBa+xB017v59YaPHhwlJWVxfTp06N3797N8xVFfBRMfe5zn4vp06dHRMv5WE499dT44he/GGeffXYce+yx8fbbb8cNN9zQ6jl4li9fHp///OejuLg4Lr744njhhRcy1u+6667RtWvX5uf3339/5OXlxcEHHxyvvfZaXHnllbH77rtnzJ9y6qmnxpVXXhlXXXVVDB8+PF5//fW45ZZbolu3bq2qqUePHnHhhRfGddddF927d4+jjz46FixYENdcc01su+220alT5ncRR4wY0Tyk2rqcd955cdttt8Xpp58eQ4cOjWeffbZ5XWFhYeyxxx7Nz6+//vo4+OCD4/jjj4+zzz47qqur49JLL40hQ4a0+OB/1qxZsWTJkoiIaGxsjLfffjvuu+++iPioJ9Lq1+Liiy+Ou+66Kw4//PC49tpro7CwML7zne9EfX19TJw4sVXXZk3uuOOO+OlPfxonnHBC/M///E/su+++qY/1ve99L6666qo47LDD4vDDD8+4RhGR0XPummuuiU9/+tMxZsyYuPTSS6O+vj6uuuqq6NWrV1x00UXN2z311FNx1FFHRZ8+feLyyy+PuXPnZhzz4/dYW14jAIBWSwAAWK+bb745iYhk1113bbGuoaEhufjii5O+ffsmRUVFyZ577pk88MADybhx45L+/fs3b1dVVZVERPLd7363xTFWr7v99tubly1dujQ544wzkrKysqRz587JAQcckDz55JPJ8OHDk+HDh2fsf8899yS77LJLkp+fn0REcvXVVydJkiRXX3118sn/5WtsbEyuv/76ZKeddkry8/OTXr16JV/84heTd999N2O74cOHJ4MHD25R6yfPa23q6uqSSy65JOnfv3+Sn5+fbLvttslZZ52VLF26tMXxSkpK1nu8ddXUv3//5PDDD2+xPCKSc845J2PZk08+mRx44IFJSUlJUlxcnHzmM59Jfve732Vsc/vttycRkcyePTtj+YwZM5KISGbMmNG87K233koOOeSQpEuXLklENF+b1dv+6le/yjjGml7rdV3TO+64I4mI5Je//OUa16/J6utx3333JYMHD04KCgqSAQMGJDfddNMaz+eTNa42a9as5PDDD0969OiR5OfnJ3379k0OP/zwFtu//vrryfHHH5/07NkzKSgoSLbffvvkS1/6UlJfX5/Rzsev2+rX/eWXX05GjBiRFBcXJz169EjOOuuspKampsX5jBs3LmPZ2u75BQsWJMcee2zSvXv3pEuXLslhhx2WvPrqq2s8xuTJk5OBAwcmubm5Ga/Jml6P1t7Pa7sX1/R7uyYfP5ckadu9uC4nnHBCEhHJcccd12Ld5MmTk4hI+vbt22JdU1NTcsMNNyQ77LBDUlRUlOy9997J448/3uJ81ne/r+2xuv7V71Vz5sxJjjjiiKS0tDTp0qVLctJJJyX/+Mc/Mo7Z0NCQfP3rX0+22267pLi4OBk+fHgyd+7cFq/x2q7d6vP61re+lfTr1y8pKChIdtttt+TBBx9Mdt999+Too4/O2HavvfZK+vTps75LnPTv33+t57mm3+9HH300+cxnPpMUFRUlPXr0SE477bQW55okH90767t+q82bNy856qijkq5duyadO3dORo0alcyZM2e9ta/L4sWLk1WrVm3QMVZb17ms6eOJF154IRk1alTSuXPnpGvXrslRRx2VzJs3L2Ob1fdOa65RW18jAIDWyEmS9XwdBwAAyJpjjz02nn322XjrrbciPz+/VfsMGDAghgwZEg8++OAmri69L33pS3Hfffe1eogn2NSqqqpil112iauvvrp5npAPP/wwevToEZMnT45zzjknyxUCANAeGS4MAADamYaGhnjxxRfj+eefj+nTp8dNN93U6oAFWL+XXnop7rnnnthvv/2ia9eu8cYbb8QNN9wQXbt2zRgS8oknnoi+ffvGf/7nf2axWgAA2jMhCwAAtDPvvfde84e/Z555ZowfPz7bJcFWpaSkJF544YW47bbb4l//+ld069YtRowYEd/+9rejvLy8ebvDDz88Dj/88CxWCgBAe2e4MAAAAAAAgBQ6ZbsAAAAAAACALZGQBQAAAAAAIAUhCwAAAAAAQAomvo+IpqamWLRoUXTp0iVycnKyXQ4AAAAAAJBFSZLEhx9+GBUVFdGp09r7qwhZImLRokWx3XbbZbsMAAAAAACgHXn33XejX79+a10vZImILl26RMRHF6tr165ZrgYAAAAAAMim5cuXx3bbbdecH6yNkCWieYiwrl27ClkAAAAAAICIiPVOMWLiewAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkEJWQ5YnnngijjjiiKioqIicnJx44IEH1rrtmWeeGTk5OTF58uSM5Q0NDTF+/Pjo1atXlJSUxJFHHhkLFizYtIUDAAAAAAAdXlZDltra2th9993jlltuWed2DzzwQDz33HNRUVHRYt2ECRNi+vTp8ctf/jKeeuqpqKmpiTFjxkRjY+OmKhsAAAAAACDystn46NGjY/To0evcZuHChXHuuefGI488EocffnjGumXLlsVtt90Wd911Vxx00EERETF16tTYbrvt4o9//GMceuihm6x2AAAAAACgY2vXc7I0NTXFqaeeGl/72tdi8ODBLdbPmTMnVq5cGYccckjzsoqKihgyZEg8/fTTm7NUAAAAAACgg8lqT5b1uf766yMvLy/OO++8Na5fvHhxFBQURPfu3TOWl5eXx+LFi9d63IaGhmhoaGh+vnz58o1TMAAAAAAA0GG0254sc+bMiZtvvjnuuOOOyMnJadO+SZKsc5/rrrsuunXr1vzYbrvtNrRcAAAAAACgg2m3IcuTTz4Z1dXVsf3220deXl7k5eXF22+/HRdddFEMGDAgIiL69OkTK1asiKVLl2bsW11dHeXl5Ws99mWXXRbLli1rfrz77rub8lQAAAAAAICtULsNWU499dR4+eWXY+7cuc2PioqK+NrXvhaPPPJIRETstddekZ+fH4899ljzfu+99168+uqrsd9++6312IWFhdG1a9eMBwAAAAAAQFtkdU6WmpqamDdvXvPzqqqqmDt3bvTo0SO233776NmzZ8b2+fn50adPn9h5550jIqJbt25xxhlnxEUXXRQ9e/aMHj16xMUXXxxDhw6Ngw46aLOeCwAAAAAA0LFkNWR54YUXYuTIkc3PL7zwwoiIGDduXNxxxx2tOsb3v//9yMvLixNOOCHq6upi1KhRcccdd0Rubu6mKBkAAAAAACAiInKSJEmyXUS2LV++PLp16xbLli0zdBgAAAAAAHRwrc0NstqTBQAAgI2nbkVjzF9Sk3r/+pWNsWBpXfTrXhxF+Rs2OsCg3qVRXGCEAQAAtm5CFgAAgK3E/CU1MWbKU9kuIyIiHhx/QAzp2y3bZQAAwCYlZAEAANhKDOpdGg+OPyD1/vOqa2LCtLkxeeywqCwr3eBaAABgaydkAQAA2EoUF+RulN4jlWWleqEAAEArdMp2AQAAAAAAAFsiIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSyGrI88cQTccQRR0RFRUXk5OTEAw880Lxu5cqVcckll8TQoUOjpKQkKioq4rTTTotFixZlHKOhoSHGjx8fvXr1ipKSkjjyyCNjwYIFm/lMAAAAAACAjiarIUttbW3svvvuccstt7RY9+9//ztefPHFuPLKK+PFF1+M+++/P95888048sgjM7abMGFCTJ8+PX75y1/GU089FTU1NTFmzJhobGzcXKcBAAAAAAB0QHnZbHz06NExevToNa7r1q1bPPbYYxnLpkyZEvvss0+88847sf3228eyZcvitttui7vuuisOOuigiIiYOnVqbLfddvHHP/4xDj300E1+DgAAAAAAQMe0Rc3JsmzZssjJyYltttkmIiLmzJkTK1eujEMOOaR5m4qKihgyZEg8/fTTWaoSAAAAAADoCLLak6Ut6uvr49JLL42TTz45unbtGhERixcvjoKCgujevXvGtuXl5bF48eK1HquhoSEaGhqany9fvnzTFA0AAAAAAGy1toieLCtXrowTTzwxmpqa4oc//OF6t0+SJHJycta6/rrrrotu3bo1P7bbbruNWS4AAAAAANABtPuQZeXKlXHCCSdEVVVVPPbYY829WCIi+vTpEytWrIilS5dm7FNdXR3l5eVrPeZll10Wy5Yta368++67m6x+AAAAAABg69SuQ5bVAcvf/va3+OMf/xg9e/bMWL/XXntFfn5+PPbYY83L3nvvvXj11Vdjv/32W+txCwsLo2vXrhkPAAAAAACAtsjqnCw1NTUxb9685udVVVUxd+7c6NGjR1RUVMRxxx0XL774Yjz44IPR2NjYPM9Kjx49oqCgILp16xZnnHFGXHTRRdGzZ8/o0aNHXHzxxTF06NA46KCDsnVaAAAAAABAB5DVkOWFF16IkSNHNj+/8MILIyJi3LhxMXHixPjtb38bERHDhg3L2G/GjBkxYsSIiIj4/ve/H3l5eXHCCSdEXV1djBo1Ku64447Izc3dLOcAAAAAAAB0TFkNWUaMGBFJkqx1/brWrVZUVBRTpkyJKVOmbMzSAAAAAAAA1qldz8kCAAAAAADQXmW1JwsAABtP3YrGmL+kJvX+9SsbY8HSuujXvTiK8tMPvTqod2kUFxi6FQAAgK2fkAUAYCsxf0lNjJnyVLbLiAfHHxBD+nbLdhkAAACwyQlZAAC2EoN6l8aD4w9Ivf+86pqYMG1uTB47LCrLSjeoDgAAAOgIhCwAAFuJ4oLcjdKDpLKsVE8UAAAAaAUT3wMAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApJCX7QIAAICNo25FY8xfUpN6//qVjbFgaV30614cRfm5qY8zqHdpFBek3x8AAGBLIWQBAICtxPwlNTFmylPZLiMeHH9ADOnbLdtlAAAAbHJCFgAA2EoM6l0aD44/IPX+86prYsK0uTF57LCoLCvdoDoAAIDs0ct98xGyAADAVqK4IHej9CCpLCvVEwUAALZgerlvPkIWAAAAAADYiujlvvkIWQAAAGArYngQAEAv981HyAIAAABbEcODAABsPkIWAAAA2IoYHgQAYPMRsgAAAMBWxPAgAACbT6dsFwAAAAAAALAlErIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAAClkNWR54okn4ogjjoiKiorIycmJBx54IGN9kiQxceLEqKioiOLi4hgxYkS89tprGds0NDTE+PHjo1evXlFSUhJHHnlkLFiwYDOeBQAAAAAA0BFlNWSpra2N3XffPW655ZY1rr/hhhvipptuiltuuSVmz54dffr0iYMPPjg+/PDD5m0mTJgQ06dPj1/+8pfx1FNPRU1NTYwZMyYaGxs312kAAAAAAAAdUF42Gx89enSMHj16jeuSJInJkyfHFVdcEcccc0xERNx5551RXl4ed999d5x55pmxbNmyuO222+Kuu+6Kgw46KCIipk6dGtttt1388Y9/jEMPPXSznQsAAAAAANCxtNs5WaqqqmLx4sVxyCGHNC8rLCyM4cOHx9NPPx0REXPmzImVK1dmbFNRURFDhgxp3mZNGhoaYvny5RkPAAAAAACAtmi3IcvixYsjIqK8vDxjeXl5efO6xYsXR0FBQXTv3n2t26zJddddF926dWt+bLfddhu5egAAAAAAYGvXbkOW1XJycjKeJ0nSYtknrW+byy67LJYtW9b8ePfddzdKrQAAAAAAQMfRbkOWPn36RES06JFSXV3d3LulT58+sWLFili6dOlat1mTwsLC6Nq1a8YDAAAAAACgLdptyDJw4MDo06dPPPbYY83LVqxYEbNmzYr99tsvIiL22muvyM/Pz9jmvffei1dffbV5GwAAAAAAgE0hL5uN19TUxLx585qfV1VVxdy5c6NHjx6x/fbbx4QJE2LSpEmx4447xo477hiTJk2Kzp07x8knnxwREd26dYszzjgjLrrooujZs2f06NEjLr744hg6dGgcdNBB2TotAAAAAACgA8hqyPLCCy/EyJEjm59feOGFERExbty4uOOOO+LrX/961NXVxdlnnx1Lly6NfffdNx599NHo0qVL8z7f//73Iy8vL0444YSoq6uLUaNGxR133BG5ubmb/XwAAAAAAICOI6shy4gRIyJJkrWuz8nJiYkTJ8bEiRPXuk1RUVFMmTIlpkyZsgkqBAAAAAAAWLN2OycLAAAAAABAeyZkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkEJetgsAAAAAYOOpW9EY85fUpN6/fmVjLFhaF/26F0dRfm7q4wzqXRrFBen3B4AtgZAFAAAAYCsyf0lNjJnyVLbLiAfHHxBD+nbLdhkAsEkJWQAAAAC2IoN6l8aD4w9Ivf+86pqYMG1uTB47LCrLSjeoDgDY2glZAAAAALYixQW5G6UHSWVZqZ4oALAeJr4HAAAAAABIQcgCAAAAAACQguHCAAAAAAC2InUrGmP+kprU+9evbIwFS+uiX/fiKMrPTX2cQb1Lo7gg/f6wJRCyAAAAAABsReYvqYkxU57Kdhnx4PgDzO3EVk/IAgAAAACwFRnUuzQeHH9A6v3nVdfEhGlzY/LYYVFZVrpBdcDWTsgCAAAAALAVKS7I3Sg9SCrLSvVEgfUw8T0AAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIIa81G7388sttPvCuu+4aeXmtOjwAAAAAAMAWp1UpyLBhwyInJyeSJGnVQTt16hRvvvlm7LDDDhtUHAAAAAAAQHvV6q4mzz33XPTu3Xu92yVJEkOGDNmgogAAAAAAANq7VoUsw4cPj8rKythmm21addDPfe5zUVxcvCF1AQAAAAAAtGutmvh+xowZrQ5YIiL+8Ic/xLbbbpu2pmarVq2Kb3zjGzFw4MAoLi6OHXbYIa699tpoampq3iZJkpg4cWJUVFREcXFxjBgxIl577bUNbhsAAAAAAGBdWhWyZMv1118fP/7xj+OWW26Jv/71r3HDDTfEd7/73ZgyZUrzNjfccEPcdNNNccstt8Ts2bOjT58+cfDBB8eHH36YxcoBAAAAAICtXavnZFmtsbEx7rjjjvjTn/4U1dXVGb1KIiIef/zxjVbcM888E1/4whfi8MMPj4iIAQMGxD333BMvvPBCRHzUi2Xy5MlxxRVXxDHHHBMREXfeeWeUl5fH3XffHWeeeeZGqwUAAAAAAODj2tyT5fzzz4/zzz8/GhsbY8iQIbH77rtnPDamAw44IP70pz/Fm2++GRERL730Ujz11FPx+c9/PiIiqqqqYvHixXHIIYc071NYWBjDhw+Pp59+eq3HbWhoiOXLl2c8AAAAAAAA2qLNPVl++ctfxr333tscdGxKl1xySSxbtix22WWXyM3NjcbGxvj2t78dJ510UkRELF68OCIiysvLM/YrLy+Pt99+e63Hve666+Kaa67ZdIUDAAAAAABbvTb3ZCkoKIjKyspNUUsL06ZNi6lTp8bdd98dL774Ytx5551x4403xp133pmxXU5OTsbzJElaLPu4yy67LJYtW9b8ePfddzdJ/QAAAAAAwNarzSHLRRddFDfffHMkSbIp6snwta99LS699NI48cQTY+jQoXHqqafGBRdcENddd11ERPTp0yci/n+PltWqq6tb9G75uMLCwujatWvGAwAAAAAAoC1aNVzY6knlV3v88cfjoYceisGDB0d+fn7Guvvvv3+jFffvf/87OnXKzIFyc3OjqakpIiIGDhwYffr0icceeyz22GOPiIhYsWJFzJo1K66//vqNVgcAAAAAAMAntSpk6datW8bzo48+epMU80lHHHFEfPvb347tt98+Bg8eHH/5y1/ipptuitNPPz0iPhombMKECTFp0qTYcccdY8cdd4xJkyZF586d4+STT94sNQIAAAAAAB1Tq0KW22+/fVPXsUZTpkyJK6+8Ms4+++yorq6OioqKOPPMM+Oqq65q3ubrX/961NXVxdlnnx1Lly6NfffdNx599NHo0qVLVmoGAACADVH1fm3UNqzKWvvzqmsyfmZDSWFeDOxVkrX2AQBaq1Uhy8cdeOCBcf/998c222yTsXz58uVx1FFHxeOPP76xaosuXbrE5MmTY/LkyWvdJicnJyZOnBgTJ07caO0CAABANlS9Xxsjb5yZ7TIiImLCtLlZbX/GxSMELQBAu9fmkGXmzJmxYsWKFsvr6+vjySef3ChFAQAAQEe0ugfL5LHDorKsNCs11K9sjAVL66Jf9+Ioys/d7O3Pq66JCdPmZrU3DwC0B9ns3doeerZGbBm9W1sdsrz88svN//3666/H4sWLm583NjbGww8/HH379t241QEAAEAHVFlWGkP6dlv/hpvI3gOy1jQAEO2nd2u2e7ZGtP/era0OWYYNGxY5OTmRk5MTBx54YIv1xcXFMWXKlI1aHAAAAAAAdDTZ7t2a7Z6tEVtO79ZWhyxVVVWRJEnssMMO8fzzz0fv3r2b1xUUFERZWVnk5mbnYgMAAAAAwNYmm71b9WxtnVaHLP3794+IiKampk1WDAAAAAAAwJaizRPfR0S8+eabMXPmzKiurm4Rulx11VUbpTAAAAAAAID2rM0hy09/+tM466yzolevXtGnT5/IyclpXpeTkyNkAQAAAAAAOoQ2hyzf+ta34tvf/nZccsklm6IeAAAAAACALUKbQ5alS5fG8ccfvylqAQAA6PCq3q+N2oZVWWl7XnVNxs9sKSnMi4G9SrJaAwAAtEabQ5bjjz8+Hn300fjqV7+6KeoBAADosKrer42RN87MdhkxYdrcbJcQMy4eIWgBAKDda3PIUllZGVdeeWU8++yzMXTo0MjPz89Yf95552204gAAADqS1T1YJo8dFpVlpZu9/fqVjbFgaV30614cRfm5m739iI960UyYNjdrvXkAAKAt2hyy3HrrrVFaWhqzZs2KWbNmZazLyckRsgAAAGygyrLSGNK3W1ba3ntAVpoFAIAtUptDlqqqqk1RBwAAAAAAwBal04bsnCRJJEmysWoBAAAAAADYYqQKWf7nf/4nhg4dGsXFxVFcXBy77bZb3HXXXRu7NgAAAAAAgHarzcOF3XTTTXHllVfGueeeG/vvv38kSRJ//vOf46tf/Wq8//77ccEFF2yKOgEAAAAAANqVNocsU6ZMiR/96Edx2mmnNS/7whe+EIMHD46JEycKWQAAAAAAgA6hzcOFvffee7Hffvu1WL7ffvvFe++9t1GKAgAAAAAAaO/aHLJUVlbGvffe22L5tGnTYscdd9woRQEAAAAAALR3bR4u7JprromxY8fGE088Efvvv3/k5OTEU089FX/605/WGL4AAAAAAABsjdrck+XYY4+N5557Lnr16hUPPPBA3H///dGrV694/vnn4+ijj94UNQIAAAAAALQ7be7JEhGx1157xdSpUzd2LQAAAAAAAFuMVCFLRER1dXVUV1dHU1NTxvLddtttg4sCAAAAAABo79ocssyZMyfGjRsXf/3rXyNJkox1OTk50djYuNGKAwAAAAAAaK/aHLJ8+ctfjp122iluu+22KC8vj5ycnE1RFwAAAAAAQLvW5pClqqoq7r///qisrNwU9QAAAAAAAGwROrV1h1GjRsVLL720KWoBAAAAAADYYrS5J8vPfvazGDduXLz66qsxZMiQyM/Pz1h/5JFHbrTiAAAAAAAA2qs2hyxPP/10PPXUU/HQQw+1WGfiewAAAAAAoKNo83Bh5513Xpx66qnx3nvvRVNTU8ZDwAIAAAAAAHQUbQ5ZPvjgg7jggguivLx8U9QDAAAAAACwRWhzyHLMMcfEjBkzNkUtAAAAAAAAW4w2z8my0047xWWXXRZPPfVUDB06tMXE9+edd95GKw6A1qtb0Rjzl9Sk3r9+ZWMsWFoX/boXR1F+burjDOpdGsUF6fcHAAAAgC1Fm0OWn/3sZ1FaWhqzZs2KWbNmZazLyckRsgBkyfwlNTFmylPZLiMeHH9ADOnbLdtlAAAAAMAm1+aQpaqqalPUAcAGGtS7NB4cf0Dq/edV18SEaXNj8thhUVlWukF1AAAAAEBH0OaQBYD2qbggd6P0IKksK9UTBQAAAABaoc0T3wMAAAAAAKAnCwBAu1L1fm3UNqzKStvzqmsyfmZDSWFeDOxVkrX2AQAAoC2ELAAA7UTV+7Ux8saZ2S4jJkybm9X2Z1w8QtACAADAFqHVIcutt94aRx55ZPTp02dT1gMA0GGt7sEyeeywqCwr3ezt169sjAVL66Jf9+Ioys/d7O3Pq66JCdPmZq0nDwAAALRVq0OWe+65J84777zYfffd4wtf+EJ84QtfiMGDB2/K2gAAOqTKstIY0rdbVtree0BWmgUAAIAtUqsnvp8xY0a89957MX78+Jg7d27st99+MWjQoLjwwgtj5syZ0dTUtCnrBAAAAAAAaFdaHbJERHTv3j2++MUvxr333htLliyJH/zgB1FfXx+nnnpq9O7dO0477bS47777ora2dlPVCwAAAAAA0C60KWT5uIKCgjjssMPihz/8Ybz77rvxyCOPxIABA+Kb3/xm3HTTTRuzRgAAAAAAgHan1XOyrM/ee+8de++9d1x77bWxcuXKjXVYAAAAAACAdil1T5Z1yc/P3xSHBQAAAAAAaDc2ScgCAAAAAACwtROyAAAAAAAApCBkAQAAAAAASCHVxPf19fXx8ssvR3V1dTQ1NWWsO/LIIzdKYQAAAAAAAO1Zm0OWhx9+OE477bR4//33W6zLycmJxsbGjVIYAAAAAABAe9bm4cLOPffcOP744+O9996LpqamjIeABQAAAAAA6CjaHLJUV1fHhRdeGOXl5ZuiHgAAAAAAgC1Cm0OW4447LmbOnLkJSgEAAAAAANhytHlOlltuuSWOP/74ePLJJ2Po0KGRn5+fsf68887baMUBAAAAAAC0V20OWe6+++545JFHori4OGbOnBk5OTnN63JycoQsAAAAAABAh9DmkOUb3/hGXHvttXHppZdGp05tHm0MAAAAAABgq9DmlGTFihUxduxYAQsAAAAAANChtTkpGTduXEybNm1T1AIAAAAAALDFaPNwYY2NjXHDDTfEI488ErvttluLie9vuummjVYcAAAAAABAe9XmkOWVV16JPfbYIyIiXn311Yx1OTk5G6cqAAAAAACAdq7NIcuMGTM2RR0AAAAAAABbFLPXAwAAAAAApNDmniz19fUxZcqUmDFjRlRXV0dTU1PG+hdffHGjFUfr1K1ojPlLalLvX7+yMRYsrYt+3YujKD93g2oZ1Ls0igs27BgAAAAAALAlaHPIcvrpp8djjz0Wxx13XOyzzz7mYWkH5i+piTFTnsp2GRER8eD4A2JI327ZLgMAAAAAADa5Nocsv//97+MPf/hD7L///puiHlIY1Ls0Hhx/QOr951XXxIRpc2Py2GFRWVa6wbUAAAAAAEBH0OaQpW/fvtGlS5dNUQspFRfkbpTeI5VlpXqhAAAAAEA7UPV+bdQ2rMpK2/OqazJ+ZkNJYV4M7FWStfahtdocsnzve9+LSy65JH784x9H//79N0VNAAAAAAAdVtX7tTHyxpnZLiMmTJub1fZnXDxC0EK71+aQZe+99476+vrYYYcdonPnzpGfn5+x/p///OdGKw4AAAAAoKNZ3YNlYwzvn0b9ysZYsLQu+nUvjqL83M3e/urpDbLVkwfaos0hy0knnRQLFy6MSZMmRXl5uYnvAQAAAAA2gWwO77/3gKw0C1ucNocsTz/9dDzzzDOx++67b4p6AAAAAAAAtgid2rrDLrvsEnV1dZuiFgAAAAAAgC1Gm0OW73znO3HRRRfFzJkz44MPPojly5dnPAAAAAAAADqCNg8Xdthhh0VExKhRozKWJ0kSOTk50djYuHEqAwAAAAAAaMfaHLLMmDFjU9QBAAAAAACwRWlzyDJ8+PBNUQcAAAAAAMAWpVVzsrz88svR1NTU6oO+9tprsWrVqtRFAQAAAAAAtHetCln22GOP+OCDD1p90P/4j/+Id955J3VRAAAAAAAA7V2rhgtLkiSuvPLK6Ny5c6sOumLFig0qCgAAOqqq92ujtiE7vcLnVddk/MyWksK8GNirJKs1AAAAtEarQpbPfe5z8cYbb7T6oP/xH/8RxcXFqYsCAICOqOr92hh548xslxETps3Ndgkx4+IRghYAAKDda1XIMnPmzE1cBgAAsLoHy+Sxw6KyrHSzt1+/sjEWLK2Lft2Loyg/d7O3H/FRL5oJ0+ZmrTcPAABAW7QqZAEAADafyrLSGNK3W1ba3ntAVpoFAADYIrVq4nsAAAAAAAAyCVkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFPKyXQAAAADwkYbG+uhUtDCqlr8RnYpKs11OVlQtr4lORQujobE+IrpluxwAgHUSsgAAAEA7saj27SgZOCUufz7blWRXycCIRbXDYq8oz3YpAADrJGQBAACAdqKipH/UVo2Pm8cOi0FlHbMny/zqmjh/2tyoGNk/26UAAKyXkAUAAADaicLcomiq7xsDu+4cu/bsmENlNdUvi6b6JVGYW5TtUgAA1svE9wAAAAAAACm0+5Bl4cKF8cUvfjF69uwZnTt3jmHDhsWcOXOa1ydJEhMnToyKioooLi6OESNGxGuvvZbFigEAAAAAgI6gXYcsS5cujf333z/y8/PjoYceitdffz2+973vxTbbbNO8zQ033BA33XRT3HLLLTF79uzo06dPHHzwwfHhhx9mr3AAAAAAAGCr167nZLn++utju+22i9tvv7152YABA5r/O0mSmDx5clxxxRVxzDHHRETEnXfeGeXl5XH33XfHmWeeublLhqypW9EY85fUpN6/fmVjLFhaF/26F0dRfm7q4wzqXRrFBen3BwAAAADYUrTrkOW3v/1tHHrooXH88cfHrFmzom/fvnH22WfHf/7nf0ZERFVVVSxevDgOOeSQ5n0KCwtj+PDh8fTTT681ZGloaIiGhobm58uXL9+0JwKbwfwlNTFmylPZLiMeHH9ADOnbMSfoBAAAAAA6lnYdsvz973+PH/3oR3HhhRfG5ZdfHs8//3ycd955UVhYGKeddlosXrw4IiLKy8sz9isvL4+33357rce97rrr4pprrtmktcPmNqh3aTw4/oDU+8+rrokJ0+bG5LHDorKsdIPqAAAAAADoCNp1yNLU1BR77713TJo0KSIi9thjj3jttdfiRz/6UZx22mnN2+Xk5GTslyRJi2Ufd9lll8WFF17Y/Hz58uWx3XbbbeTqYfMqLsjdKD1IKstK9UQBAAAAAGiFdj3x/bbbbhu77rprxrJPfepT8c4770RERJ8+fSIimnu0rFZdXd2id8vHFRYWRteuXTMeAAAAAAAAbdGuQ5b9998/3njjjYxlb775ZvTv3z8iIgYOHBh9+vSJxx57rHn9ihUrYtasWbHffvtt1loBAAAAAICOpV0PF3bBBRfEfvvtF5MmTYoTTjghnn/++bj11lvj1ltvjYiPhgmbMGFCTJo0KXbcccfYcccdY9KkSdG5c+c4+eSTs1w9AAAAAACwNWvXIcunP/3pmD59elx22WVx7bXXxsCBA2Py5MlxyimnNG/z9a9/Perq6uLss8+OpUuXxr777huPPvpodOnSJYuVAwAAAAAAW7t2HbJERIwZMybGjBmz1vU5OTkxceLEmDhx4uYrCgAAAAAA6PDa9ZwsAAAAAAAA7ZWQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBTa/cT3AAAdRUNjfXQqWhhVy9+ITkWl2S5ns6taXhOdihZGQ2N9RHTLdjkAAACwXkIWAIB2YlHt21EycEpc/ny2K8mekoERi2qHxV5Rnu1SAAAAYL2ELAAA7URFSf+orRofN48dFoPKOl5PlvnVNXH+tLlRMbJ/tksBAACAVhGyAAC0E4W5RdFU3zcGdt05du3Z8YbLaqpfFk31S6IwtyjbpQAAAECrmPgeAAAAAAAgBSELAAAAAABACkIWAAAAAACAFIQsAAAAAAAAKQhZAAAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKSQl+0C+EjV+7VR27AqK23Pq67J+JktJYV5MbBXSVZrAACAbGporI9ORQujavkb0amoNNvlZEXV8proVLQwGhrrI6JbtssBAIB1ErK0A1Xv18bIG2dmu4yYMG1utkuIGRePELQAANBhLap9O0oGTonLn892JdlVMjBiUe2w2CvKs10KAACsk5ClHVjdg2Xy2GFRWbb5v61Wv7IxFiyti37di6MoP3eztx/xUS+aCdPmZq03DwAAtAcVJf2jtmp83Dx2WAzKwr8N2oP51TVx/rS5UTGyf7ZLAQCA9RKytCOVZaUxpG92usPvPSArzQIAAB9TmFsUTfV9Y2DXnWPXnh1zqKym+mXRVL8kCnOLsl0KAACsl4nvAQAAAAAAUhCyAAAAAAAApCBkAQAAAAAASEHIAgAAAAAAkIKQBQAAAAAAIIW8bBcAAAAAQKaq92ujtmFVVtqeV12T8TMbSgrzYmCvkqy1v6WrW9EY85ekf/3qVzbGgqV10a97cRTl56Y+zqDepVFckH5/gC2BkAUAAACgHal6vzZG3jgz22XEhGlzs9r+jItHCFpSmr+kJsZMeSrbZcSD4w+IIX27ZbsMgE1KyAIAAADQjqzuwTJ57LCoLCvd7O1vrF4Mac2rrokJ0+ZmrSfP1mBQ79J4cPwBqfdf/Rps6D04qPfmv38BNjchCwAAAEA7VFlWmrVeAHsPyEqzbCTFBbkb5d7J5j0IsKUw8T0AAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACkIWAAAAAACAFPKyXQAAAAAAAPD/NTTWR6eihVG1/I3oVFSa7XKyomp5TXQqWhgNjfUR0S3b5ayVkAUAAAAAANqRRbVvR8nAKXH589muJLtKBkYsqh0We0V5tktZKyELAGwl6lY0xvwlNan3r1/ZGAuW1kW/7sVRlJ+b+jiDepdGcUH6/QEAAKCjqyjpH7VV4+PmscNiUFnH7Mkyv7omzp82NypG9s92KeskZAGArcT8JTUxZspT2S4jHhx/QAzp23678QIAAEB7V5hbFE31fWNg151j154d89/YTfXLoql+SRTmFmW7lHUSsgDAVmJQ79J4cPwBqfefV10TE6bNjcljh0XlBnxLZlDvjvkNGwAAAKDjEbIAwFaiuCB3o/QgqSwr1RMFAAAAoBU6ZbsAAAAAAACALZGQBQAAAAAAIAUhCwAAAAAAQApCFgAAAAAAgBSELAAAAAAAACkIWQAAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAAp5GW7AOAjVe/XRm3Dqqy1P6+6JuNnNpQU5sXAXiVZax8AAAAAoC2ELNAOVL1fGyNvnJntMiIiYsK0uVltf8bFIwQtAAAAAMAWQcgC7cDqHiyTxw6LyrLSrNRQv7IxFiyti37di6MoP3eztz+vuiYmTJub1d48AAAAAABtIWSBdqSyrDSG9O2Wtfb3HpC1pgEAAAAAtjgmvgcAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAU8rJdAAAA8JGGxvroVLQwqpa/EZ2KSrNdTlZULa+JTkULo6GxPiK6ZbscAACAdRKyAABAO7Go9u0oGTglLn8+25VkV8nAiEW1w2KvKM92KQAAAOskZAEAgHaioqR/1FaNj5vHDotBZR2zJ8v86po4f9rcqBjZP9ulAAAArJeQBQAA2onC3KJoqu8bA7vuHLv27JhDZTXVL4um+iVRmFuU7VIAAADWy8T3AAAAAAAAKejJAgAAAADQjjQ01kenooVRtfyN6FTU8YaRrVpeE52KFkZDY31EdMwe3mw5hCwAAAAA0M5UvV8btQ2rstL2vOqajJ/ZUFKYFwN7lWSt/WxbVPt2lAycEpc/n+1KsqdkYMSi2mGxV5RnuxRYJyELAAAAALQjVe/XxsgbZ2a7jJgwbW5W259x8YgOG7RUlPSP2qrxcfPYYTGorOP1ZJlfXRPnT5sbFSP7Z7sUWC8hCwAAAAC0I6t7sEweOywqs/ABe/3KxliwtC76dS+Oovzczd7+vOqamDBtbtZ68rQHhblF0VTfNwZ23Tl27dnxhstqql8WTfVLojC3KNulwHoJWQAAAACgHaosK40hfbPzAfveA7LSLMAWR8gC0I4Yc7djj7kLAAAAwJZFyALQThhz9yMdecxdAAAAALYsQhaAdsKYu8bcBQAAAGDLImQBaGeMuQsAAAAAW4ZO2S4AAAAAAABgS6QnCwC0I1Xv12ZtyLR51TUZP7OhpDDPnDwAAADAFkPIAgDtRNX7tTHyxpnZLiMmTJub1fZnXDxC0AIAAABsEYQsANBOrO7BMnnssKgsK93s7devbIwFS+uiX/fiKMrP3eztz6uuiQnT5matJw8AAABAWwlZAKCdqSwrjSF9u2Wl7b0HZKVZAAAA4GPqVjZGRMSrC5dlpf1sfxEzIrvDmbeFkAUAAAAAANqR+f8XMFx6/ytZriT7Sgrbd4zRvqsDAAAAAIAO5pDBfSIiYlBZaRRncUjvbA1pvlpJYV67n7d1iwpZrrvuurj88svj/PPPj8mTJ0dERJIkcc0118Stt94aS5cujX333Td+8IMfxODBg7NbLAAAAAAApNCjpCBO3Gf7bJeR1SHNtxSdsl1Aa82ePTtuvfXW2G233TKW33DDDXHTTTfFLbfcErNnz44+ffrEwQcfHB9++GGWKgUAAAAAADqCLaInS01NTZxyyinx05/+NL71rW81L0+SJCZPnhxXXHFFHHPMMRERceedd0Z5eXncfffdceaZZ2arZAAAAABIpaGxPjoVLYyq5W9Ep6LsDdOTLVXLa6JT0cJoaKyPCN+gB9q3LSJkOeecc+Lwww+Pgw46KCNkqaqqisWLF8chhxzSvKywsDCGDx8eTz/99BYTsnT0P5wR/ngCAAAArLao9u0oGTglLn8+25VkT8nAiEW1w2KvKM92KQDr1O5Dll/+8pcxZ86ceOGFF1qsW7x4cURElJdnvtmWl5fH22+/vdZjNjQ0RENDQ/Pz5cuXb6Rq0/GH8yP+eAIAAABEVJT0j9qq8XHz2GExKIsTTmfL/OqaOH/a3KgY2T/bpQCsV7sOWd599904//zz49FHH42ioqK1bpeTk5PxPEmSFss+7rrrrotrrrlmo9W5oTr6H84IfzwBAAAAVivMLYqm+r4xsOvOsWvPjjfiR1P9smiqXxKFuWv/PBCgvWjXIcucOXOiuro69tprr+ZljY2N8cQTT8Qtt9wSb7zxRkR81KNl2223bd6murq6Re+Wj7vsssviwgsvbH6+fPny2G677TbBGbROR//DGeGPJwAAAAAAW552HbKMGjUqXnnllYxlX/7yl2OXXXaJSy65JHbYYYfo06dPPPbYY7HHHntERMSKFSti1qxZcf3116/1uIWFhVFYWLhJawcAAIC2qlvZGBERry5clrUa6lc2xoKlddGve3EU5edu9vbnVdds9jYBANJq1yFLly5dYsiQIRnLSkpKomfPns3LJ0yYEJMmTYodd9wxdtxxx5g0aVJ07tw5Tj755GyUDAAAAKnN/7+A4dL7X1nPllu/ksJ2/ZEFAEBEtPOQpTW+/vWvR11dXZx99tmxdOnS2HfffePRRx+NLl26ZLs0AAAAaJNDBveJiIhBZaVRnIVeJBEf9SSZMG1uTB47LCqzNG9oSWFeDOxVkpW2AQDaYosLWWbOnJnxPCcnJyZOnBgTJ07MSj0AAACwsfQoKYgT99k+22VERERlWWkM6dsx5w0FAGitTtkuAAAAAAAAYEskZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACnnZLgAAAAAA+P/qVjZGRMSrC5dlpf36lY2xYGld9OteHEX5uZu9/XnVNZu9TYC0hCwAAAAA0I7M/7+Q4dL7X8lyJdlVUuijS6D9804FAAAAAO3IIYP7RETEoLLSKM5ST5IJ0+bG5LHDorKsdLO3H/FRwDKwV0lW2gZoCyELAAAAALQjPUoK4sR9ts92GVFZVhpD+nbLdhkA7ZqJ7wEAAAAAAFIQsgAAAAAAAKQgZAEAAAAAAEhByAIAAAAAAJCCkAUAAAAAACAFIQsAAAAAAEAKQhYAAAAAAIAUhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkIGQBAAAAAABIQcgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACnnZLgCAjzQ01kenooVRtfyN6FRUmu1yNruq5TXRqWhhNDTWR0S3bJcDAAAAAOslZAFoJxbVvh0lA6fE5c9nu5LsKRkYsah2WOwV5dkuBQAAAADWS8jSDtStbIyIiFcXLstK+/UrG2PB0rro1704ivJzs1LDvOqarLQL7UlFSf+orRofN48dFoPKOl5PlvnVNXH+tLlRMbJ/tksBAAAAgFYRsrQD8/8vYLj0/leyXEn2lRS6Jem4CnOLoqm+bwzsunPs2rPjDZfVVL8smuqXRGFuUbZLAQAAAIBW8Yl2O3DI4D4RETGorDSKs9CTZF51TUyYNjcmjx0WlVn89nxJYV4M7FWStfYBAAAAAKAthCztQI+Sgjhxn+2zXUZUlpXGkL4d79vzAAAAAACQhpAFAAAAoB1paKyPTkULo2r5G9GpqOPN11i1vCY6FS2Mhsb6iPBlUADaNyELAAAAQDuyqPbtKBk4JS5/PtuVZE/JwIhFtcNiryjPdikAsE5CFgAAAIB2pKKkf9RWjY+bxw6LQVmcOzVb5lfXxPnT5kbFyP7ZLgUA1kvIAgAAANCOFOYWRVN93xjYdefYtWfHGy6rqX5ZNNUvicLcomyXAgDr1SnbBQAAAAAAAGyJhCwAAAAAAAApCFkAAAAAAABSMCcLAEA7UbeyMSIiXl24LCvt169sjAVL66Jf9+Ioys/d7O3Pq67Z7G0CAADAhhCyAAC0E/P/L2S49P5XslxJdpUU+l9UAAAAtgz+BQvtQENjfXQqWhhVy9+ITkWl2S4nK6qW10SnooXR0FgfEd2yXQ5AVhwyuE9ERAwqK43iLPUkmTBtbkweOywqy7Lz96ikMC8G9irJStsAAADQVkIWaAcW1b4dJQOnxOXPZ7uS7CoZGLGodljsFeXZLgUgK3qUFMSJ+2yf7TKisqw0hvQVeAMAAMD6CFmgHago6R+1VePj5rHDYlCWvjmcbfOra+L8aXOjYmT/bJcCAAAAANAqQhZoBwpzi6Kpvm8M7Lpz7NqzY35zuKl+WTTVL4nC3KJslwIAAAAA0CpCFgAAgHaibmVjRES8unBZVtqvX9kYC5bWRb/uxVGUhbmhIj6aHwoAALYUQhYAAIB2Yv7/BQyX3v9KlivJvpJC/1wFAKD983+tAAAA7cQhg/tERMSgstIozkJPknnVNTFh2tyYPHZYVGZxrsCSwrwY2Kska+0DAEBrCVkAAADaiR4lBXHiPttnu4yoLCuNIX075lyBAADQFp2yXQAAAAAAAMCWSMgCAAAAAACQgpAFAAAAAAAgBSELAAAAAABACia+BwAAAICtSN2Kxpi/pCb1/vOqazJ+pjWod2kUF+Ru0DEA2jshCwAAAABsReYvqYkxU57a4ONMmDZ3g/Z/cPwBMaRvtw2uA6A9E7IAAAAAwFZkUO/SeHD8Aan3r1/ZGAuW1kW/7sVRlJ++J8qg3qWp9wXYUghZAAAAAGArUlyQu8E9SPYesHFqAdjamfgeAAAAAAAgBT1ZAAAAANqRupWNERHx6sJlWWl/Yw0VldaGTrYOAJuTkAUAAACgHZn/fyHDpfe/kuVKsquk0MdWALR//loBAAAAtCOHDO4TERGDykqjOEs9SSZMmxuTxw6LyrLsTFxeUpgXA3uVZKVtaA/0aNOjjS2HkAUAAACgHelRUhAn7rN9tsuIyrLSDZ48HUhHj7aP6NHGlsBdCgAAAADQjujRpkcbWw4hCwC0Ew2N9dGpaGFULX8jOhVl539is6lqeU10KloYDY31EeEbkwAAQMelRxtsOYQsANBOLKp9O0oGTonLn892JdlTMjBiUe2w2CvKs10KAAAAwHoJWQCgnago6R+1VePj5rHDYlCWumNn0/zqmjh/2tyoGNk/26UAAAAAtIqQBQDaicLcomiq7xsDu+4cu/bseN2xm+qXRVP9kijMLcp2KQAAAACt0inbBQAAAAAAAGyJhCwAAAAAAAApCFkAAAAAAABSELIAAAAAAACkYOJ7AABoJ+pWNkZExKsLl2Wl/fqVjbFgaV30614cRfm5WalhXnVNVtoFAABIQ8gCAADtxPz/Cxguvf+VLFeSfSWF/qkCAAC0f/7lAgAA7cQhg/tERMSgstIozkJPknnVNTFh2tyYPHZYVJaVbvb2VyspzIuBvUqy1j4AAEBrCVkAAKCd6FFSECfus322y4jKstIY0rdbtssAAABo90x8DwAAAAAAkIKQBQAAAAAAIAUhCwAAAAAAQApCFgAAAPh/7d15eFX1nT/wTwhkgQCyIzsGoVUEGlEEEUFlUemIKypWLdXWqija6oCOEqhK6aJWGZdWRadFQStVStWW4vI8jDudKKOMDgwoVhgYpCgYFsP5/WGTH1es4k3IzQ2v1/PkCffc8z33c/Sbc8+97/M9XwAASIOQBQAAAAAAIA0NM10AAAAAUHPKt1fEivWb026/fN3mlN/pKm5TFIV5udXaBgBAXSdkAQAAgHpkxfrNMfr2xdXezsS5ZdVqv2DC4OjdsXm16wAAqMuELAAAAFCPFLcpigUTBqfdfuuOinhvY3l0alEYBY3SH4lS3KYo7bYAANlCyAIAAAD1SGFebrVHkPTvVjO1AADUdya+BwAAAAAASIOQBQAAAAAAIA1CFgAAAAAAgDQIWQAAAAAAANIgZAEAAAAAAEiDkAUAAAAAACANdTpkmT59ehx22GHRtGnTaNu2bYwZMybeeuutlHWSJInS0tLo0KFDFBYWxtChQ+ONN97IUMUAAAAAAMC+ok6HLM8991xccskl8eKLL8bChQvjk08+iREjRsSWLVuq1vnJT34SN998c8ycOTNeeeWVaN++fQwfPjw++uijDFYOAAAAAADUdw0zXcAXeeqpp1Iez5o1K9q2bRtLliyJIUOGRJIkceutt8a1114bp5xySkREPPDAA9GuXbt48MEH43vf+14mygZIS/mOioiI+M+/bsrI62/dURHvbSyPTi0Ko6BRbq2//vJ1m2v9NQEAAACgOup0yPJZmzZ9+sVjy5YtIyJi5cqVsXbt2hgxYkTVOvn5+XH00UfH888/L2QBssqKv4cMk+YtzXAlmdUkP6vemgAAAADYh2XNN1lJksSVV14ZgwcPjt69e0dExNq1ayMiol27dinrtmvXLt55551/uK1t27bFtm3bqh5/+OGHe6FigK9mxMHtIyKiuG1RFGZoJMnEuWVx69h+0aNtUa2/fsSnAUv31k0y8toAAAAA8FVlTchy6aWXxuuvvx6LFy/e7bmcnJyUx0mS7LZsV9OnT4+pU6fWeI0A1dGySV6ceXiXTJcRPdoWRe+OzTNdBgAAAADUeXV64vtKEyZMiPnz58czzzwTnTp1qlrevv2nV31XjmiptG7dut1Gt+xq8uTJsWnTpqqf1atX753CAQAAAACAeqtOhyxJksSll14a8+bNi6effjq6d++e8nz37t2jffv2sXDhwqpl27dvj+eeey4GDRr0D7ebn58fzZo1S/kBAAAAAAD4Kur07cIuueSSePDBB+Pxxx+Ppk2bVo1Yad68eRQWFkZOTk5MnDgxbrrppjjwwAPjwAMPjJtuuikaN24cZ599doarBwAAAAAA6rM6HbLceeedERExdOjQlOWzZs2K888/PyIirr766igvL4+LL744Nm7cGAMGDIg//elP0bRp01quFgAAAAAA2JfU6ZAlSZIvXScnJydKS0ujtLR07xcEAAAAAADwd3V6ThYAAAAAAIC6SsgCAAAAAACQBiELAAAAAABAGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkIaGmS4AAPhU+Y6KiIj4z79uysjrb91REe9tLI9OLQqjoFFurb/+8nWba/01AQAAAKpDyAIAdcSKv4cMk+YtzXAlmdUk3+kJAAAAkB18iwEAdcSIg9tHRERx26IozNBIkolzy+LWsf2iR9uiWn/9iE8Dlu6tm2TktQEAAAC+KiELANQRLZvkxZmHd8l0GdGjbVH07tg802UAAAAA1HlCFgAAqCfKt1fEivXpz29UOTdSdedIKm5TFIV5tT8iDwAAoLYJWQAAoJ5YsX5zjL59cbW3M3FuWbXaL5gw2Ig4AABgnyBkAQCAeqK4TVEsmDA47fZbd1TEexvLo1OLwiioxtxQxW0yM68TAABAbROyAABAPVGYl1vtEST9u9VMLQAAAPuCBpkuAAAAAAAAIBsJWQAAAAAAANLgdmEAAAD1RPn2ilixfnPa7Zev25zyuzqK2xRFYV76c/sAAEA2ELIAAADUEyvWb47Rty+u9nYmzi2r9jYWTBhc7TmCAACgrhOyAAAA1BPFbYpiwYTBabffuqMi3ttYHp1aFEZBo+qNQiluU1St9gAAkA2ELAAAAPVEYV5utUeP9O9WM7UAAMC+wMT3AAAAAAAAaTCSpR4wuSUAAAAAANQ+IUs9YHLL7Fe+oyIiIv7zr5syVkNN3n87HTUR8gEAAAAA1CYhSz1gcsvst+LvAcOkeUszXEnmNcl3WAIAAAAAsoNvM+sBk1tmvxEHt4+IiOK2RVGYgVEkEZ+OJJk4tyxuHdsverTNTFjWJL9hdG/dJCOvDQAAAADwVQlZoA5o2SQvzjy8S6bLiIiIHm2L3PINAAAAAGAPNMh0AQAAAAAAANlIyAIAAAAAAJAGIQsAAAAAAEAahCwAAAAAAABpELIAAAAAAACkQcgCAAAAAACQBiELAAAAAABAGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkAYhCwAAAAAAQBqELAAAAAAAAGkQsgAAAAAAAKRByAIAAAAAAJAGIQsAAAAAAEAaGma6AACgZpRvr4gV6zen3X75us0pv9NV3KYoCvNyq7UNAAAAgGwgZAGAemLF+s0x+vbF1d7OxLll1Wq/YMLg6N2xebXrAAAAAKjrhCwAUE8UtymKBRMGp91+646KeG9jeXRqURgFjdIfiVLcpijttgAAAADZRMgCAPVEYV5utUeQ9O9WM7UAAAAA7AtMfA8AAAAAAJAGIQsAAAAAAEAahCwAAAAAAABpELIAAAAAAACkQcgCAAAAAACQBiELAAAAAABAGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkIaGmS4AqBnl2ytixfrNabdfvm5zyu90FbcpisK83GptAwAAAAAgGwhZoJ5YsX5zjL59cbW3M3FuWbXaL5gwOHp3bF7tOgAAAAAA6johC9QTxW2KYsGEwWm337qjIt7bWB6dWhRGQaP0R6IUtylKuy0AAAAAQDYRskA9UZiXW+0RJP271UwtAAAAAAD7AhPfAwAAAAAApMFIFgAAAAAAqEfKt1fEivWb026/fN3mlN/pKm5TFIV56U9NkA2ELAAAAAAAUI+sWL85Rt++uNrbmTi3rFrtF0wYXO0pDuo6IQsAAAAAANQjxW2KYsGEwWm337qjIt7bWB6dWhRGQaP0R6IUtylKu222ELIAAAAAAEA9UpiXW+0RJP271Uwt9Z2QBQCgnnDPXQAAAKhdQhYAgHrCPXcBAACgdglZAADqCffcBQAAgNolZAEAqCfccxcAAABql5AFAAAAoB4xTxsA1B4hC0A94YMUAAAQYZ42AKhNQhaAesIHKQAAIMI8bQBQm4QsAPWED1IAAECEedoAoDYJWQDqCR+kAAAAAKB2Nch0AQAAAAAAANlIyAIAAAAAAJAGIQsAAAAAAEAahCwAAAAAAABpELIAAAAAAACkQcgCAAAAAACQBiELAAAAAABAGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkAYhCwAAAAAAQBqELAAAAAAAAGkQsgAAAAAAAKRByAIAAAAAAJAGIQsAAAAAAEAahCwAAAAAAABpELIAAAAAAACkQcgCAAAAAACQBiELAAAAAABAGoQsAAAAAAAAaRCyAAAAAAAApEHIAgAAAAAAkAYhCwAAAAAAQBoaZrqAmnLHHXfET3/601izZk0cfPDBceutt8ZRRx2V6bIAAAAAAGpV+faKWLF+c9rtl6/bnPI7XcVtiqIwL7da24C6rl6ELHPnzo2JEyfGHXfcEUceeWTcfffdcfzxx8ebb74ZXbp0yXR5AAAAAAC1ZsX6zTH69sXV3s7EuWXVar9gwuDo3bF5teuAuiwnSZIk00VU14ABA6KkpCTuvPPOqmVf//rXY8yYMTF9+vQvbf/hhx9G8+bNY9OmTdGsWbO9WSoAAAAAwF5V3ZEsW3dUxHsby6NTi8IoaJT+SBQjWchme5obZP1Ilu3bt8eSJUti0qRJKctHjBgRzz///Oe22bZtW2zbtq3q8aZNmyLi0/9oAAAAAADZrkvTnGq0bhg9Wzatdg07tm6JHVurvRnIiMq84MvGqWR9yPJ///d/UVFREe3atUtZ3q5du1i7du3ntpk+fXpMnTp1t+WdO3feKzUCAAAAAADZ56OPPormzf/xbe+yPmSplJOTmswmSbLbskqTJ0+OK6+8surxzp0744MPPohWrVr9wzb12YcffhidO3eO1atXu13aPkw/QB9AH0AfQB9AHyBCP0AfQB9AH0AfiPg0Y/joo4+iQ4cOX7he1ocsrVu3jtzc3N1Graxbt2630S2V8vPzIz8/P2XZfvvtt7dKzBrNmjXbZ/9g+P/0A/QB9AH0AfQB9AEi9AP0AfQB9AH0gS8awVKpQS3UsVfl5eXFoYceGgsXLkxZvnDhwhg0aFCGqgIAAAAAAOq7rB/JEhFx5ZVXxre+9a3o379/DBw4MH75y1/Gu+++GxdddFGmSwMAAAAAAOqpehGyjB07NjZs2BDTpk2LNWvWRO/eveOJJ56Irl27Zrq0rJCfnx9TpkzZ7RZq7Fv0A/QB9AH0AfQB9AEi9AP0AfQB9AH0ga8iJ0mSJNNFAAAAAAAAZJusn5MFAAAAAAAgE4QsAAAAAAAAaRCyAAAAAAAApEHIAvxDOTk58dhjj2W6DAAAMsx5IQAAfD4hyz7g/PPPjzFjxmS6DDLk/PPPj5ycnN1+li9fnunSqAWV//8vuuii3Z67+OKLIycnJ84///zaL4yMeP755yM3NzdGjRqV6VKoJY4BfJbzQirpC/sm5wKsW7cuvve970WXLl0iPz8/2rdvHyNHjowXXngh06VRy1avXh3f+c53okOHDpGXlxddu3aNyy+/PDZs2LBH7Z999tnIycmJv/3tb3u3UGpU5eeDH//4xynLH3vsscjJyclQVdSmXb8nbNSoUbRr1y6GDx8e9913X+zcuTPT5WUtIQvsA0aNGhVr1qxJ+enevXumy6KWdO7cOebMmRPl5eVVy7Zu3RoPPfRQdOnSpVrb3rFjR3XLoxbdd999MWHChFi8eHG8++671dpWRUWFE7AssTePAQBkl5o8FyA7nXrqqfHaa6/FAw88EG+//XbMnz8/hg4dGh988EGmS6MW/c///E/0798/3n777XjooYdi+fLlcdddd8WiRYti4MCB+kM9V1BQEDNmzIiNGzdmuhQypPJ7wlWrVsWTTz4Zw4YNi8svvzxGjx4dn3zySabLy0pCln3MU089FYMHD4799tsvWrVqFaNHj44VK1ZUPb9q1arIycmJefPmxbBhw6Jx48bRt29fV7VkucorlHb9yc3Njd///vdx6KGHRkFBQRxwwAExderU3Q6ma9asieOPPz4KCwuje/fu8cgjj2RoL0hXSUlJdOnSJebNm1e1bN68edG5c+f4xje+UbVsT48PDz/8cAwdOjQKCgriN7/5Ta3uC+nbsmVLPPzww/H9738/Ro8eHffff3/Vc5VXof3hD3+Ivn37RkFBQQwYMCCWLl1atc79998f++23XyxYsCAOOuigyM/Pj3feeScDe8JXVVPHgGOOOSYuvfTSlG1v2LAh8vPz4+mnn977O0KN69atW9x6660py/r16xelpaVVj3NycuKee+6Jk08+ORo3bhwHHnhgzJ8/v3YLZa/bk75A9vuic4HK9/ldfd5VzTfccEO0bds2mjZtGhdccEFMmjQp+vXrt/eLp0b87W9/i8WLF8eMGTNi2LBh0bVr1zj88MNj8uTJceKJJ0ZExKZNm+K73/1utG3bNpo1axbHHHNMvPbaa1XbKC0tjX79+sXdd98dnTt3jsaNG8fpp59uNEOWueSSSyIvLy/+9Kc/xdFHHx1dunSJ448/Pv785z/HX//617j22msjImLbtm1x9dVXR+fOnSM/Pz8OPPDAuPfee2PVqlUxbNiwiIho0aKF0dFZ5rjjjov27dvH9OnT/+E6jz76aBx88MGRn58f3bp1i5///OdVz02ePDmOOOKI3dr06dMnpkyZsldqpmZVfk/YsWPHKCkpiWuuuSYef/zxePLJJ6vOD77s/SAiYv78+dG/f/8oKCiI1q1bxymnnJKBvakbhCz7mC1btsSVV14Zr7zySixatCgaNGgQJ5988m5XI1977bXxwx/+MMrKyqJnz55x1llnSTLrmT/+8Y9xzjnnxGWXXRZvvvlm3H333XH//ffHjTfemLLeddddV3W10znnnBNnnXVWLFu2LENVk65vf/vbMWvWrKrH9913X4wfPz5lnT09PvzzP/9zXHbZZbFs2bIYOXJkrdRP9c2dOzd69eoVvXr1inPOOSdmzZoVSZKkrHPVVVfFz372s3jllVeibdu28U//9E8po5U+/vjjmD59etxzzz3xxhtvRNu2bWt7N0hTTRwDLrjggnjwwQdj27ZtVW1mz54dHTp0qPqQTf00derUOOOMM+L111+PE044IcaNG+cKV8hCe3Iu8EVmz54dN954Y8yYMSOWLFkSXbp0iTvvvHMvVkxNKyoqiqKionjsscdS3s8rJUkSJ554YqxduzaeeOKJWLJkSZSUlMSxxx6bctxfvnx5PPzww/H73/8+nnrqqSgrK4tLLrmkNneFavjggw/ij3/8Y1x88cVRWFiY8lz79u1j3LhxMXfu3EiSJM4999yYM2dO3HbbbbFs2bK46667oqioKDp37hyPPvpoRES89dZbsWbNmvjFL36Rid0hDbm5uXHTTTfF7bffHu+9995uzy9ZsiTOOOOMOPPMM2Pp0qVRWloa1113XdWX7+PGjYuXXnop5YKsN954I5YuXRrjxo2rrd2ghh1zzDHRt2/fmDdv3h69H/zhD3+IU045JU488cT4j//4j1i0aFH0798/w3uRQQn13nnnnZecdNJJn/vcunXrkohIli5dmiRJkqxcuTKJiOSee+6pWueNN95IIiJZtmxZbZRLDTvvvPOS3NzcpEmTJlU/p512WnLUUUclN910U8q6v/71r5P999+/6nFEJBdddFHKOgMGDEi+//3v10rtVF/l3//69euT/Pz8ZOXKlcmqVauSgoKCZP369clJJ52UnHfeeZ/b9h8dH2699dZa3ANqyqBBg6r+3+3YsSNp3bp1snDhwiRJkuSZZ55JIiKZM2dO1fobNmxICgsLk7lz5yZJkiSzZs1KIiIpKyur/eJJW00eA7Zu3Zq0bNmyqk8kSZL069cvKS0trY1doYbsel7YtWvX5JZbbkl5vm/fvsmUKVOqHkdE8i//8i9Vjzdv3pzk5OQkTz75ZC1Uy96UTl/43e9+V2v1UfO+6Fxg1qxZSfPmzVPW/93vfpfs+pXBgAEDkksuuSRlnSOPPDLp27fvXq2bmvXb3/42adGiRVJQUJAMGjQomTx5cvLaa68lSZIkixYtSpo1a5Zs3bo1pU1xcXFy9913J0mSJFOmTElyc3OT1atXVz3/5JNPJg0aNEjWrFlTeztC2l588cUvPKbffPPNSUQkL730UhIRVceJz6r8DLFx48a9Vyw1btf3/yOOOCIZP358kiSpx/yzzz47GT58eEq7q666KjnooIOqHvfp0yeZNm1a1ePJkycnhx122F6unprwRd8Tjx07Nvn617++R+8HAwcOTMaNG7e3y80aRrLsY1asWBFnn312HHDAAdGsWbOqeTk+ez/ePn36VP17//33j4hPJ8gjOw0bNizKysqqfm677bZYsmRJTJs2repqpqKiorjwwgtjzZo18fHHH1e1HThwYMq2Bg4caCRLFmrdunWceOKJ8cADD8SsWbPixBNPjNatW6ess6fHh336yoQs9dZbb8XLL78cZ555ZkRENGzYMMaOHRv33Xdfynq7/r23bNkyevXqlfL3npeXl/L+QPaoiWNAfn5+nHPOOVX9pqysLF577TW3htgH7Pp336RJk2jatKnzQsgye3ou8GXbOPzww1OWffYxdd+pp54a77//fsyfPz9GjhwZzz77bJSUlMT9998fS5Ysic2bN0erVq1SPieuXLky5Yr1Ll26RKdOnaoeDxw4MHbu3BlvvfVWJnaJGpb8fYTbypUrIzc3N44++ugMV8TeMmPGjHjggQfizTffTFm+bNmyOPLII1OWHXnkkfHf//3fUVFRERGfjmaZPXt2RHzaZx566CGjWOqBJEkiJydnj94PysrK4thjj81wxXVHw0wXQO365je/GZ07d45f/epX0aFDh9i5c2f07t07tm/fnrJeo0aNqv5deR9eExxnryZNmkSPHj1Slu3cuTOmTp36ufdLLCgo+MLtffbezGSH8ePHV82n8K//+q+7Pb+nx4cmTZrUSr3UnHvvvTc++eST6NixY9WyJEmiUaNGXzrZ4a5/74WFhf7+s1hNHAMuuOCC6NevX7z33ntx3333xbHHHhtdu3attX2gZjVo0GC3WwXteovASrueF0Z8elxwXli/7GlfIHt92bnAnvaBz54HfLYN2aGgoCCGDx8ew4cPj+uvvz4uuOCCmDJlSlx88cWx//77x7PPPrtbm8/O2bOryn7hPDE79OjRI3JycuLNN9+MMWPG7Pb8f/3Xf0WLFi2icePGtV8ctWrIkCExcuTIuOaaa1IunKr8on1Xnz3en3322TFp0qT4y1/+EuXl5bF69eqqIJ/stWzZsujevXvs3LnzS98PPnu7wX2dkGUfsmHDhli2bFncfffdcdRRR0VExOLFizNcFZlSUlISb7311m7hy2e9+OKLce6556Y83nWiZLLHqFGjqr4s/excKo4P9dcnn3wS//Zv/xY///nPY8SIESnPnXrqqTF79uzo3bt3RHz6992lS5eIiNi4cWO8/fbb8bWvfa3Wa2bvqIljwCGHHBL9+/ePX/3qV/Hggw/G7bffvvcLZ69p06ZNrFmzpurxhx9+GCtXrsxgRWSKvlC/7cm5QHFxcXz00UexZcuWqgtqysrKUtbt1atXvPzyy/Gtb32ratmrr7661+tn7zvooIPisccei5KSkli7dm00bNgwunXr9g/Xf/fdd+P999+PDh06RETECy+8EA0aNIiePXvWUsVUR6tWrWL48OFxxx13xBVXXJHyRenatWtj9uzZce6558YhhxwSO3fujOeeey6OO+643baTl5cXEVE1soHsNH369PjGN76R8vd70EEH7fZZ4Pnnn4+ePXtGbm5uRER06tQphgwZErNnz47y8vI47rjjol27drVaOzXr6aefjqVLl8YVV1wRnTp1+tL3gz59+sSiRYvi29/+du0WWkcJWfYhLVq0iFatWsUvf/nL2H///ePdd9+NSZMmZbosMuT666+P0aNHR+fOneP000+PBg0axOuvvx5Lly6NG264oWq9Rx55JPr37x+DBw+O2bNnx8svvxz33ntvBisnXbm5uVW3fqo8Mark+FB/LViwIDZu3Bjf+c53onnz5inPnXbaaXHvvffGLbfcEhER06ZNi1atWkW7du3i2muvjdatW3/u1W1kp5o6BlxwwQVx6aWXRuPGjePkk0/e63Wz9xxzzDFx//33xze/+c1o0aJFXHfddbv1DfYN+kL9tifnAosWLYrGjRvHNddcExMmTIiXX365aoLjShMmTIgLL7ww+vfvH4MGDYq5c+fG66+/HgcccEAt7g3VsWHDhjj99NNj/Pjx0adPn2jatGm8+uqr8ZOf/CROOumkOO6442LgwIExZsyYmDFjRvTq1Svef//9eOKJJ2LMmDFVtw0uKCiI8847L372s5/Fhx9+GJdddlmcccYZ0b59+wzvIXtq5syZMWjQoBg5cmTccMMN0b1793jjjTfiqquuio4dO8aNN94YLVu2jPPOOy/Gjx8ft912W/Tt2zfeeeedWLduXZxxxhnRtWvXyMnJiQULFsQJJ5wQhYWFUVRUlOld4yvq06dPjBs3LuXiqR/84Adx2GGHxY9+9KMYO3ZsvPDCCzFz5sy44447UtqOGzcuSktLY/v27VWfKckO27Zti7Vr10ZFRUX87//+bzz11FMxffr0GD16dJx77rnRoEGDL30/mDJlShx77LFRXFwcZ555ZnzyySfx5JNPxtVXX53p3csIc7LsA3bu3BkNGzaMBg0axJw5c2LJkiXRu3fvuOKKK+KnP/1ppssjQ0aOHBkLFiyIhQsXxmGHHRZHHHFE3Hzzzbvd9mXq1KkxZ86c6NOnTzzwwAMxe/bsOOiggzJUNdXVrFmzaNas2W7LHR/qr3vvvTeOO+643b5Uifj06tWysrL4y1/+EhERP/7xj+Pyyy+PQw89NNasWRPz58+vukKN+qEmjgFnnXVWNGzYMM4+++wvvb0kdU/leWFExOTJk2PIkCExevToOOGEE2LMmDFRXFyc4QqpLfrCvmNPzgVWrVoVv/nNb+KJJ56IQw45JB566KEoLS1NWXfcuHExefLk+OEPfxglJSWxcuXKOP/8870XZJGioqIYMGBA3HLLLTFkyJDo3bt3XHfddXHhhRfGzJkzIycnJ5544okYMmRIjB8/Pnr27BlnnnlmrFq1KuUK9R49esQpp5wSJ5xwQowYMSJ69+6925ev1G0HHnhgvPrqq1FcXBxjx46N4uLi+O53vxvDhg2LF154IVq2bBkREXfeeWecdtppcfHFF8fXvva1uPDCC2PLli0REdGxY8eYOnVqTJo0Kdq1a1d1W1qyz49+9KOU24GVlJTEww8/HHPmzInevXvH9ddfH9OmTdttLsbTTz89NmzYEB9//LGL87LMU089Ffvvv39069YtRo0aFc8880zcdttt8fjjj0dubu4evR8MHTo0HnnkkZg/f37069cvjjnmmHjppZcyvGeZk5O4iWq9N2rUqOjRo0fMnDkz06UAUAc9++yzMWzYsNi4ceMX3m8bIiJWr14d3bp1i1deeSVKSkoyXQ5fkfNCKukL1IThw4dH+/bt49e//nWmS6GWlJaWxmOPPbbb7eQAYF/mdmH12MaNG+P555+PZ599Ni666KJMlwMAZLEdO3bEmjVrYtKkSXHEEUcIWLKM80Iq6Quk6+OPP4677rorRo4cGbm5ufHQQw/Fn//851i4cGGmSwMAyCghSz02fvz4eOWVV+IHP/hBnHTSSZkuBwDIYv/+7/8ew4YNi549e8Zvf/vbTJfDV+S8kEr6AumqvHXIDTfcENu2bYtevXrFo48++rkTYgMA7EvcLgwAAAAAACANJr4HAAAAAABIg5AFAAAAAAAgDUIWAAAAAACANAhZAAAAAAAA0iBkAQAAAAAASIOQBQAAAAAAIA1CFgAAAAAAgDQIWQAAAAAAANIgZAEAAAAAAEjD/wO52QQ0TYWBHg
AAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 2000x1000 with 1 Axes>"
]
...
...
@@ -1886,7 +1887,7 @@
"duration = \"2010 -> 2022\"\n",
"plt.title(f\"Variation of monthly precipitation in Würzburg, {duration}\")\n",
"plt.ylabel(\"[mm / month]\");\n",
"plt.savefig('monthly_precipitation_variation
_wuerzburg
.png', facecolor=\"w\", bbox_inches = 'tight')"
"plt.savefig('
wuerzburg_
monthly_precipitation_variation.png', facecolor=\"w\", bbox_inches = 'tight')"
]
},
{
...
...
%% Cell type:markdown id:d52465eb tags:
# Niederschlag from DWD
## Klimadaten
[stundenwerte_RR_05705_hist.zip](https://www.dwd.de/DE/leistungen/_config/leistungsteckbriefPublication.zip?view=nasPublication&nn=16102&imageFilePath=675349470684952943382999480164406894835507349402593906628786280354581421008571928705011438849092751258299962952312473511744392814375916459681379337607540679777573246835730326122056459559982440454207144420355774317891799102452512290249737221071767178890331035105331501334382788925&download=true)
from [Klimadaten Deutschland - Stundenwerte (Archiv)](https://www.dwd.de/DE/leistungen/klimadatendeutschland/klarchivstunden.html) "Würzburg, Niederschlag, Historisch"
## Climate data center
https://cdc.dwd.de/portal/
%% Cell type:code id:
316a929e
tags:
%% Cell type:code id:
1cfa0188
tags:
``` python
import pandas as pd
```
%% Cell type:raw id:
daf94ab6
tags:
%% Cell type:raw id:
c566f571
tags:
# Old version
from datetime import datetime
dateparse = lambda x: datetime.strptime(x, '%Y%m%d%H')
df = pd.read_csv('produkt_rr_stunde_19950901_20211231_05705.txt',
sep=';',
skipinitialspace=True,
usecols = [1, 3],
names = ['datetime', 'precipitation'],
skiprows = 1,
parse_dates = ['datetime'],
date_parser=dateparse,
index_col = 'datetime'
)
df
%% Cell type:code id:f
16392a3
tags:
%% Cell type:code id:f
ef5e23e
tags:
``` python
df = pd.read_csv('data_OBS_DEU_PT1H_RR_5705.csv',
index_col=False,
parse_dates=['datetime'],
usecols = [2,3],
names=['datetime', 'precipitation'],
skiprows=1
)
df = df.set_index('datetime')
df
```
%% Output
precipitation
datetime
1995-09-01 00:00:00 0.0
1995-09-01 01:00:00 0.2
1995-09-01 02:00:00 0.2
1995-09-01 03:00:00 0.1
1995-09-01 04:00:00 0.0
... ...
2023-10-27 04:00:00 0.0
2023-10-27 05:00:00 0.0
2023-10-27 06:00:00 0.0
2023-10-27 07:00:00 0.0
2023-10-27 08:00:00 0.2
[245850 rows x 1 columns]
%% Cell type:code id:52f73e31 tags:
``` python
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20, 10)
```
%% Cell type:code id:672300ca tags:
``` python
df2 = df[df.precipitation >= 0]
```
%% Cell type:code id:0fdf4a6f tags:
``` python
df2.resample('d').sum().plot(title='Niederschlag in Würzburg [mm / Tag]');
```
%% Output
%% Cell type:code id:9a68733c tags:
``` python
df2.resample('M').sum().plot(title='Niederschlag in Würzburg [mm / Monat]', ylim=(0, None));
```
%% Output
%% Cell type:code id:929bacb6 tags:
``` python
yearly_values = df2[df2.index.year >= 1996].resample('Y').sum()
```
%% Cell type:code id:c4dd7535 tags:
``` python
yearly_values
.describe()
df2[(df2.index.year >= 2010) & (df2.index.year < 2023)].resample('Y').sum()
.describe()
```
%% Output
precipitation
count
28
.000000
mean 5
63.071429
std 9
6.674589
min 4
10.5
00000
25%
512.55
0000
50% 5
48
.900000
75% 6
14.4
00000
max
807.1
00000
count
13
.000000
mean 5
59.800000
std 9
3.541524
min 4
32.1
00000
25%
493.20
0000
50% 5
37
.900000
75% 6
28.9
00000
max
744.4
00000
%% Cell type:code id:0a1cc458 tags:
``` python
yearly_values.plot.bar(title='Niederschlag in Würzburg [mm / Jahr]', ylim=(0, None));
plt.savefig('wuerzburg_yearly_precipitation.png', facecolor='w', bbox_inches='tight')
```
%% Output
%% Cell type:code id:c74631eb tags:
``` python
yearly_values.boxplot()
plt.title("Niederschlag in Würzburg, zwischen 1996 & 2022 [mm / Jahr]")
plt.savefig('wurzburg_yearly_precipitations_1996_2022.png', facecolor='w', bbox_inches='tight')
plt.savefig('wu
e
rzburg_yearly_precipitations_1996_2022.png', facecolor='w', bbox_inches='tight')
```
%% Output
%% Cell type:code id:faf431eb tags:
``` python
df3 = df2[df2.index.year == 2022]
```
%% Cell type:code id:2509790f tags:
``` python
rain2022 = pd.pivot_table(df3, values='precipitation', index=df3.index.time, columns=df3.index.dayofyear)
rain2022
```
%% Output
datetime 1 2 3 4 5 6 7 8 9 10 ... 356 357 \
00:00:00 0.0 0.0 0.0 0.6 0.8 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.2
01:00:00 0.0 0.0 0.0 1.1 0.4 0.0 0.0 0.0 0.3 0.0 ... 0.0 0.6
02:00:00 0.0 0.0 2.4 1.1 0.0 0.0 0.0 0.0 0.3 0.0 ... 0.1 0.2
03:00:00 0.0 0.0 0.1 0.6 0.6 0.0 0.0 0.3 0.4 0.0 ... 0.4 0.3
04:00:00 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.8 0.0 ... 0.0 0.2
05:00:00 0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.0 0.9 0.0 ... 0.0 0.0
06:00:00 0.0 0.0 0.2 2.5 0.0 0.0 0.0 0.4 0.1 0.0 ... 0.1 0.1
07:00:00 0.0 0.0 1.2 1.6 0.0 0.0 0.0 0.1 0.2 0.0 ... 1.4 0.0
08:00:00 0.0 0.0 2.8 1.1 0.0 0.0 0.0 0.0 0.8 0.0 ... 0.3 0.0
09:00:00 0.0 0.0 0.1 1.2 0.0 0.1 0.0 0.0 0.2 0.0 ... 1.1 0.0
10:00:00 0.0 0.0 0.1 1.2 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0
11:00:00 0.0 0.0 0.9 1.5 0.0 0.0 0.1 0.0 0.1 0.0 ... 0.0 0.0
12:00:00 0.0 0.0 0.0 3.2 0.0 0.0 0.2 0.0 0.0 0.0 ... 0.1 0.1
13:00:00 0.0 0.0 0.0 1.9 0.0 0.0 0.1 0.0 0.0 0.0 ... 0.0 0.5
14:00:00 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.2 1.5
15:00:00 0.0 0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.4 2.3
16:00:00 0.0 0.0 0.1 0.8 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.3 2.3
17:00:00 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.1
18:00:00 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.2 1.4
19:00:00 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.2 1.8
20:00:00 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.6
21:00:00 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.1 1.5
22:00:00 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.7 0.1
23:00:00 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 1.3 0.0
datetime 358 359 360 361 362 363 364 365
00:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
01:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
02:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
03:00:00 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
04:00:00 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
05:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
06:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
07:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
08:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
09:00:00 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0
10:00:00 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0
11:00:00 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0
12:00:00 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14:00:00 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15:00:00 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0
16:00:00 0.0 0.0 0.0 0.0 0.0 0.7 0.1 0.0
17:00:00 0.0 0.0 0.0 0.0 0.0 1.4 1.1 0.0
18:00:00 0.0 0.0 2.2 0.0 0.0 0.0 0.1 0.0
19:00:00 0.0 0.0 1.0 0.0 0.0 0.0 0.1 0.0
20:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22:00:00 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
23:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[24 rows x 365 columns]
%% Cell type:code id:42ddd82d tags:
``` python
import seaborn as sns
```
%% Cell type:code id:f1b17ef2 tags:
``` python
sns.heatmap(rain2022, annot=False, cmap='viridis', vmax=5)
plt.title('mm/h Regen in Würzburg, 2022')
plt.show()
```
%% Output
%% Cell type:code id:29be9114 tags:
``` python
df4 = df2[(df2.index.year >= 2010)].resample('M').sum()
df4
```
%% Output
precipitation
datetime
2010-01-31 35.9
2010-02-28 28.5
2010-03-31 29.7
2010-04-30 23.7
2010-05-31 68.4
... ...
2023-06-30 21.3
2023-07-31 54.2
2023-08-31 69.9
2023-09-30 18.6
2023-10-31 52.7
[166 rows x 1 columns]
%% Cell type:code id:283cd890 tags:
``` python
import calendar
df4['Year'] = df4.index.year
df4['Month'] = df4.index.month
df4['Month'] = df4['Month'].apply(lambda x: calendar.month_abbr[x])
df4
```
%% Output
precipitation Year Month
datetime
2010-01-31 35.9 2010 Jan
2010-02-28 28.5 2010 Feb
2010-03-31 29.7 2010 Mar
2010-04-30 23.7 2010 Apr
2010-05-31 68.4 2010 May
... ... ... ...
2023-06-30 21.3 2023 Jun
2023-07-31 54.2 2023 Jul
2023-08-31 69.9 2023 Aug
2023-09-30 18.6 2023 Sep
2023-10-31 52.7 2023 Oct
[166 rows x 3 columns]
%% Cell type:code id:28a0fd61 tags:
``` python
df4 = df4.set_index(['Year', 'Month'])
df4
```
%% Output
precipitation
Year Month
2010 Jan 35.9
Feb 28.5
Mar 29.7
Apr 23.7
May 68.4
... ...
2023 Jun 21.3
Jul 54.2
Aug 69.9
Sep 18.6
Oct 52.7
[166 rows x 1 columns]
%% Cell type:code id:8e3bd7d1 tags:
``` python
df_precipitation = df4.reset_index().pivot_table(columns='Year',index='Month',values='precipitation', sort=False)
df_precipitation
```
%% Output
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 \
Month
Jan 35.9 38.6 66.6 29.8 31.1 53.3 62.2 14.7 56.1 37.2 23.2
Feb 28.5 31.4 12.2 35.1 39.6 8.4 60.1 21.2 12.4 10.6 106.5
Mar 29.7 6.2 5.7 26.1 7.7 43.3 36.5 41.6 46.0 44.8 27.0
Apr 23.7 14.2 11.8 42.1 40.7 17.3 49.6 20.9 34.5 27.8 10.9
May 68.4 6.6 34.7 99.7 73.7 22.4 66.9 118.4 48.4 72.0 41.2
Jun 21.5 110.0 67.2 44.7 16.7 39.3 53.4 49.3 27.3 44.6 75.6
Jul 75.2 94.6 66.8 36.3 77.5 26.7 47.5 85.0 54.4 25.3 15.5
Aug 185.1 43.4 28.0 108.9 95.1 67.6 30.6 61.1 22.5 39.2 61.9
Sep 55.3 28.3 44.8 88.9 31.2 26.2 32.5 68.3 24.1 31.2 31.9
Oct 27.6 36.1 41.9 56.5 39.2 28.5 38.1 36.1 8.8 65.9 41.6
Nov 87.0 0.6 79.7 60.2 35.3 87.8 66.0 62.4 11.4 37.2 9.6
Dec 106.5 109.5 78.5 30.2 41.3 27.6 7.4 49.9 86.2 54.2 48.3
Year 2021 2022 2023
Month
Jan 54.6 50.7 41.8
Feb 48.6 51.0 20.5
Mar 35.8 18.4 72.5
Apr 17.6 87.8 49.3
May 69.8 28.9 21.9
Jun 100.9 23.2 21.3
Jul 138.7 17.5 54.2
Aug 82.0 40.2 69.9
Sep 6.0 109.1 18.6
Oct 42.5 43.9 52.7
Nov 26.3 43.7 NaN
Dec 60.5 46.9 NaN
%% Cell type:code id:fa12c1b9 tags:
``` python
ax=sns.heatmap(df_precipitation, cmap='viridis_r', annot=True, fmt=".0f")
ax.invert_yaxis()
plt.title("Precipitation in Würzburg [mm / month]");
plt.savefig('wurzburg_monthly_precipitation
s
.png', facecolor='w', bbox_inches='tight')
plt.savefig('wu
e
rzburg_monthly_precipitation.png', facecolor='w', bbox_inches='tight')
```
%% Output
%% Cell type:code id:470cf56e tags:
``` python
df_precipitation.sum().plot.bar(title='Niederschlag in Würzburg [mm / Jahr]', ylim=(0, None));
```
%% Output
%% Cell type:code id:40727a96 tags:
``` python
df_precipitation.mean(axis=1).plot.bar(title='Mittlerer Niederschlag in Würzburg\n1966 -> 2022\n[mm / Monat]',
ylim=(0, None));
```
%% Output
%% Cell type:code id:0a195120 tags:
``` python
df_precipitation.transpose().plot.box(showfliers=False, ylim=(0, None))
duration = "2010 -> 2022"
plt.title(f"Variation of monthly precipitation in Würzburg, {duration}")
plt.ylabel("[mm / month]");
plt.savefig('monthly_precipitation_variation
_wuerzburg
.png', facecolor="w", bbox_inches = 'tight')
plt.savefig('
wuerzburg_
monthly_precipitation_variation.png', facecolor="w", bbox_inches = 'tight')
```
%% Output
%% Cell type:code id:e5d682d5 tags:
``` python
# TODO: Compare 1995 -> 2021 with 2015 -> 2021
# TODO: Get duration from min max index
# TODO: Ridgeline for each month?
# TODO: apply to Feuerbach
# TODO: Push and document
# TODO: Show on map
```
%% Cell type:code id:803223b4 tags:
``` python
```
...
...
python_scripts/get_dwd_precipitation/wurzburg_monthly_precipitation
s
.png
→
python_scripts/get_dwd_precipitation/wu
e
rzburg_monthly_precipitation.png
View file @
59634a67
File moved
python_scripts/get_dwd_precipitation/wuerzburg_monthly_precipitation_variation.png
0 → 100644
View file @
59634a67
32.9 KB
python_scripts/get_dwd_precipitation/wuerzburg_yearly_precipitation.png
0 → 100644
View file @
59634a67
36.1 KB
python_scripts/get_dwd_precipitation/wurzburg_yearly_precipitations_1996_2022.png
→
python_scripts/get_dwd_precipitation/wu
e
rzburg_yearly_precipitations_1996_2022.png
View file @
59634a67
File moved
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment