
Parameter Catalogs for
Simulation

Kai-Holger Brassel, Hamburg, <mail@khbrassel.de>
This work by Kai-Holger Brassel, Hamburg, is licensed under CC BY-NC-ND 4.01

Non-final version: April 20th, 2021.

Go to PDF-Version2

1. Introduction

This introduction talks about the work of the author and
others, but without bibliographic references. Currently, it
is just meant as background to better understand the
technical documentation in the sections to follow. Maybe it
could be developed into a more serious paper later.

Simulation of energy supply and consumption of buildings at the level of districts
or even cities not only requires elaborated algorithms but also careful design of
model structure and parameters. Structural aspects include building geometry as
well as arrangement of buildings, e.g. to take shadowing and heat transfer into
account. Assigning usage patterns or energy components like heat pumps, PV,
boilers, etc. to specific buildings also count as structural aspects of a simulation
model. Moreover, this multitude of model entities has to be defined in more detail
by lots of numeric, ordinal or nominal parameters. Our experience with developing
simulation systems like INSEL and SimStadt showed that manual parametrization
based on informal data collections, typologies, spreadsheet tables, etc. from
different sources is tedious and often hard to reproduce. Instead, parametrization
of complex models should be supported by software providing formally defined

1 https://creativecommons.org/licenses/by-nc-nd/4.0
2 ParameterCatalogs.pdf

1

https://creativecommons.org/licenses/by-nc-nd/4.0
ParameterCatalogs.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0
ParameterCatalogs.pdf

Parameter Catalogs for Simulation

parameter catalogs, that are systematically created and updated by domain
experts.

Parameter catalogs and the software to create, maintain and deploy them
should be independent of any specific simulation software to enhance software
modularity (separation of concerns). Ideally, modelers can enhance their
simulation environment by adding suited parameter catalogs as software plug-ins
and use them to parametrize model entities easily, e.g. via drag and drop.

Automatic parametrization of components in simulation models requires a formal
data model which fits the simulation models in terms of content and structure
and can pass information to them. Self-contained parameter catalogs fulfill this
requirement by providing an application programmers interface (API) that can be
queried for automatic, rule-based parametrization of simulation models.

To get good results fast, close collaboration with domain experts and short
development cycles are desirable. We achieved this by exploiting techniques
of so called low code development. Basically this means that domain experts
encode their knowledge into a graphical diagram defining types of components,
their relations, and attributes. From this diagram, program code for storing and
manipulating data sets in main memory as well as code to write and read that
data to and from XML files (or data bases) are automatically generated. A
modern graphical user interface to create, read, update, and delete data (CRUD
operations) can also be provided with no or very few lines of manually written
code.

The overall motivation for the work on parameter catalogs for simulation is to make
easier to develop and perform computer simulations in complex and data rich
domains like building physics, transportation, and all kinds of urban infrastructure.

1.1. The Bigger Picture

A good part of computer science was and is driven by the motivation to make
it easier to develop computer programs of all sorts. "Higher" programming
languages were invented to make programs human readable and soon special
constructs for functional programming (computation without side effects) and
structured programming (computation without go to statements) were introduced
to help programmers writing and understanding ever growing programs. Then,
between 1962 and 1967, program language Simula was developed especially

2

Parameter Catalogs for Simulation

to deal with the challenges of simulating systems comprising of many different
types of objects. This opened the door to more direct computer representations of
real world objects, their attributes, relationships and behavior, ultimately leading
to object-oriented software development that today is embodied in programming
languages like Java, C++, Python, and graphical notations like the Unified
Modeling Language (UML).

While these achievements had boosted the productivity of software developers,
still the creation of correct, efficient and maintainable programs — including
simulations — required a big deal of expert knowledge and experience. To
overcome this bottleneck, starting in the 70s, so called 4th generation languages
entered the stage. These languages were tailored to specific tasks like statistics
("S" 1976, "R" being its successor), database programming (SQL 1979), or
simulation (MATLAB around 1979, Mathematica 1988, Modellica 1999) to name
a few. By sacrificing generality, these special languages become more accessible
to domain experts, not just trained software developers. To flatten the learning
curve even more, formal graphical languages for special purposes were invented,
e.g. Simulink for block diagram simulation models in 1984, Entity-Relationship-
Diagrams for data modeling in 1976, UML for object-oriented systems design
in the 1990s, or graphical languages to specify business and also scientific
workflows around 2000.

This very short history of technologies for development of software in general,
and simulations in particular, shall illuminate the tools at our disposal:

• general purpose programming languages that combine structured, functional
and object-oriented approaches to enable the creation of big, modular software
systems, often called "programming in the large"

• formal textual domain specific languages (DSLs) dedicated to solve specific
tasks with ease

• formal graphical DSLs.

Note that DSLs more tend to describe what shall be achieved by a computation
instead of describing in detail, how to achieve it. Therefore, DSLs usually look
more like a model than like an algorithm.

Now back to the task at hand.

3

Parameter Catalogs for Simulation

Some domains deal with a few types of simple objects to be simulated. Take the
building blocks of an electric circuit as an example. The algorithms to simulate
these correctly and efficiently may be quite complex — the model elements
usually can be described by very few parameters like resistance or capacity. More
complex domains like (regenerative) energy systems or building physics deal
with more complex objects to be simulated, e.g. PV modules or layered walls
of buildings, often coming in different types and configurations, and dozens of
possibly interdependent parameters.

1.2. Lessons Learned

First a note on terminology: Instead of parameter catalogs in SimStadt we used
term library like in building physics library. Obviously this was not a good choice,
since library is used a lot in IT and programming with all sorts of meaning. Instead
we started to talk about data catalogs, but in data science this term has specific
meaning, namely: catalogs of data and data sources. Since our catalogs, first of
all, shall grant structured access to parameters for simulated entities parameter
catalog sounds more appropriate to me.

The problem of navigating huge parameter spaces and assembling complex
simulation models popped up as the author worked on a diagram editor for INSEL,
a simulation language and runtime environment developed for renewable energy
systems simulation. To make existing catalogs on weather data, solar panels
and inverter modules accessible to the modeler, special dialogs were added
to the INSEL user interface that allowed browsing through the catalogs. Using
this browsers, the modeler would choose a weather station, panel or inverter to
parameterize a corresponding INSEL function-block. However, there are some
severe disadvantages with this approach:

1. Parameter catalogs were stored in a proprietary data format on disk within the
INSEL application distribution, meaning they could not used independently
from INSEL by other interested parties (systems or users).

2. The catalogs have to be maintained by editing text files manually.

3. While INSEL modeler could browse the catalogs, searching and sorting were
not supported.

4

Parameter Catalogs for Simulation

4. Development of Java Swing UIs for the different kind of catalogs is time
consuming as is their maintenance, e.g. if a catalog data format were to
change.

5. Putting UIs to handle big amounts of data into a diagram editor is not very
user friendly.

From 2013 to 2016, the simulation platform SimStadt was developed to make
specific modeling and simulation workflows accessible to experts in urban
planning and energy systems. Using INSEL and other simulators under the hood,
the usage of 3D city data, provided as CityGML files, was a core requirement of
this project.

To enable simulation of, say, the heating demand of a district, geometric building
data had to be enriched with data on building physics and usage. To do so, existing
informations about building physics and usage — often only available as informal
typologies or tables — had to be provided to the SimStadt user on an abstract
level, e.g. to choose between refurbishment scenarios. At the same time, specific
building configurations and parameter sets had to be injected into the simulation
models to obtain the desired results.

Again, we implemented parameter catalogs to fulfill these requirements, but
compared to the quite simple catalogs used in INSEL, the data for building
materials, window, wall and roof types as well as the typologies of buildings,
households, usage patterns, and so on were more intricate. They had to be
created iteratively in collaboration with domain experts. In this situation, manual
coding data formats and access with a general programming language would
have led to relatively long iteration cycles and high communication effort between
programmer and domain expert. Instead, we decided to use a DSL for data
modeling and use code generation whenever possible. Since SimStadt was
developed within the Java eco-system we followed this standard approach:3

1. Developer and domain expert create a first version of the data model as XML
Schema Definition (our DSL).

2. For plausibility checks one would use any standard XML editor to create
example data conforming to the XSD.

3A similar approach is in use to standardize extensions to CityGML via so called application
domain extensions (ADE) like the energy ADE for exchanging energy related data.

5

Parameter Catalogs for Simulation

3. With JAXB (Java Architecture for XML Binding) Java code is generated to read
our XML catalogs into Java objects that, in turn, can be accessed by SimStadt
workflows to generate and parameterize simulations.

4. If required, developer and domain expert go back to step one to refine data
model and catalog data.

After the data model for building physics catalogs had matured, we developed a
desktop application for convenient creation and maintenance of building physics
data catalogs separate from SimStadt. It was developed in Java with a user
interface written in JavaFX and was well received by domain experts.

However, as a different catalog — this time for building usages — had to be
created, it was quite difficult to reuse the XML schema and application code from
the building physics catalog: The usage catalog data model was "pressed" into
a form similar to the building physics catalog data model, and the UI code was
"over-engineered" to accommodate both catalog’s requirements.

1.3. Low-Code-Development of Parameter Catalogs

From INSEL and SimStadt we learned, that manual and automatic construction
and parameterization of complex simulation models with many types of
interrelated objects should be supported be the means of domain specific
parameter catalogs.

Close collaboration with domain experts in designing and implementing these
catalogs in short development cycles is desirable.

Parameter catalogs and the software for their creation, maintenance and
deployment should be independent of any specific simulation software, (a) to be
reusable and (b) not to overload simulation applications.

In SimStadt, catalog development was partly facilitated by a textual DSL for
data modeling (XML schema language) and automatic generation of Java code
from it. On the other hand, user interfaces and generation and parameterization
of simulations from templates within SimStadt workflows had still to be coded
manually hindering the routinely creation of new catalogs.

Now, in 2020, several developments in different projects provide an opportunity
to re-think the topic of parameter catalogs for simulations, namely:

6

Parameter Catalogs for Simulation

1. Plans for a new Urban Simulation Platform at Concordia University, Montreal.

2. New implementation of INSEL user interface based on the Eclipse application
framework and Eclipse-Sirius diagram editors.

3. Enhancement of existing building physics and usage catalogs from SimStadt
and their adaptation to new regions.

4. Development of a new comprehensive catalog of electric systems
components to be used in SimStadt as well as in Concordia’s Urban
Simulation Platform.

In what follows, the new technology stack used to implement (4) is documented
in detail. It uses four technologies to replace manual coding by code generation
from models:

• Ecore to model the catalog’s data and generate Java classes and persistence
layer from it.

• EMF Forms for modeling and generating tables, forms and buttons to create,
read, update, and delete data (CRUD).

• E4, the Eclipse way of modeling the application user interface itself, e.g. the
placement and behavior of views, editors, toolbars, menus, and more.

• A template engine called Handlebars to generate fully parameterized
simulation models from textual templates without programming.

The new technology stack is rooted in the Eclipse application framework and eco-
system.4 Its main advantage is the possibility to implement CRUD applications
like parameter catalogs and their underlying data models with no or very view
lines of handwritten code (low-code-development).

Plans are to use the same approach also for implementation of (3). Since task
(2) and maybe (1) will use Eclipse, too, close integration of parameter catalogs
and simulation environments seems feasible. E.g., a user could drag an electric
system component from a catalog onto an INSEL block for parametrization.

The Eclipse application framework offers:

4A comparable, but completely different approach would be to combine several web applications
and services via portal software in web browsers.

7

Parameter Catalogs for Simulation

• OSGI plug-in mechanism and UI framework for integrating applications and
services

• E4 application model to declaratively describe user interface’s structure

• General notion of project with specific file types, help system, preferences etc.

• IDE support for important general purpose languages like Java, Python5 ,
Ruby, C, Fortran, C++

• Support for creating textual and graphical DSLs (XText6 , Sirius7)

• Industry proven DSLs and code generators for data models and form based
UIs via the Eclipse Modeling Framework8 (EMF) providing:

◦ Ecore9 for model driven generation of Java classes and persistence layers
for XML or data bases

◦ EMF Forms10 for describing and generating form based UIs

◦ Mechanisms to adapt or extend data models and forms to special needs
(e.g., we added quantities — that is numbers with units — to Ecore and
EMF Forms, a feature very important for parameter catalogs)

5 https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
6 https://www.eclipse.org/Xtext
7 https://www.eclipse.org/sirius
8 https://www.eclipse.org/modeling/emf
9 https://www.eclipse.org/ecoretools
10 https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements

8

https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/ecoretools
https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements
https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/ecoretools
https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements

Parameter Catalogs for Simulation

• Rich open source eco-system with lots of plugins and projects important for
an urban simulation platform:

◦ model server for distributed access and work on Ecore models, including
model comparison and migration (CDO11 , EMFCompare12)

◦ a Python implementation of Ecore13

◦ GIS: storage, processing, and visualization of geographical data (list of
projects under the umbrella LocationTech14 , e.g. user-friendly desktop
internet GIS uDig15)

◦ workbench for traffic simulation (SUMO16)

◦ spatial multi-agent-simulation (GAMA-Platform17)

◦ scientific workflows (Triquetrum18)

◦ visualizations (Nebula19)

◦ machine learning (deeplearning4j20)

◦ 45+ projects in the area of IoT21

◦ …

As always, all that glitters is not gold. When we go through the details below, some
bugs and inconsistencies, typical for open source projects of this age and size,
have to be addressed.

11 https://projects.eclipse.org/projects/modeling.emf.cdo
12 https://www.eclipse.org/emf/compare
13 https://pyecore.readthedocs.io/en/latest
14 https://projects.eclipse.org/projects/locationtech
15 http://udig.refractions.net
16 https://www.eclipse.org/sumo
17 https://gama-platform.github.io/wiki/Home
18 https://projects.eclipse.org/projects/science.triquetrum
19 https://www.eclipse.org/nebula/widgets/visualization/visualization.php
20 https://deeplearning4j.org
21 https://iot.eclipse.org

9

https://projects.eclipse.org/projects/modeling.emf.cdo
https://www.eclipse.org/emf/compare
https://pyecore.readthedocs.io/en/latest
https://projects.eclipse.org/projects/locationtech
http://udig.refractions.net
https://www.eclipse.org/sumo
https://gama-platform.github.io/wiki/Home
https://projects.eclipse.org/projects/science.triquetrum
https://www.eclipse.org/nebula/widgets/visualization/visualization.php
https://deeplearning4j.org
https://iot.eclipse.org
https://projects.eclipse.org/projects/modeling.emf.cdo
https://www.eclipse.org/emf/compare
https://pyecore.readthedocs.io/en/latest
https://projects.eclipse.org/projects/locationtech
http://udig.refractions.net
https://www.eclipse.org/sumo
https://gama-platform.github.io/wiki/Home
https://projects.eclipse.org/projects/science.triquetrum
https://www.eclipse.org/nebula/widgets/visualization/visualization.php
https://deeplearning4j.org
https://iot.eclipse.org

Parameter Catalogs for Simulation

2. How to Implement Parameter Catalogs with Eclipse

At the end of this chapter, you should be able to build a running software prototype
for creating and maintaining parameter catalogs based on a graphical data model
of the domain you are an expert in.

To build data models and parameter catalogs from scratch, we first have to
understand some basics about Eclipse, and then install the correct Eclipse
package. Thereafter, we can model our data with Ecore considering some best
practices, followed by the generation of Java classes and user interface (UI).
Finally, we will install some plug-ins to "pimp" our Eclipse installation in order to
add units and quantities to the mix.

2.1. Eclipse Basics

Eclipse22 was originally developed by IBM and became Open Source in 2001.
It is best known for its Integrated Development Environments (Eclipse IDEs), not
only for Java, but also for C++, Python and many other programming languages.
These IDEs are created on top of the Eclipse Rich Client Platform (Eclipse RCP),
an application framework and plug-in system based on Java and OSGi. Eclipse
RCP is foundation of a plethora of general-purpose applications, too.

First time users of Eclipse better understand the following concepts.

Eclipse Packages.
An Eclipse package is an Eclipse distribution dedicated to a specific type of
task.23 A list of packages is available at eclipse.org24 . Beside others it contains
Eclipse IDE for Java Developers, Eclipse IDE for Scientific Computing, and
the package we will use: Eclipse Modeling Tools. Note that third parties offer
many other packages, e.g. GAMA for multi-agent-simulation or Obeo Designer
Community for creating Sirius diagram editors.

Several Eclipse packages can be installed side by side,
even different releases of the same package. Multiple
Eclipse installations can run at the same time, each on its
own workspace (see below).

22 https://en.wikipedia.org/wiki/Eclipse_(software)
23The notion of an Eclipse package has nothing to do with Java packages.
24 https://www.eclipse.org/downloads/packages/

10

https://en.wikipedia.org/wiki/Eclipse_(software)
https://www.eclipse.org/downloads/packages/
https://en.wikipedia.org/wiki/Eclipse_(software)
https://www.eclipse.org/downloads/packages/

Parameter Catalogs for Simulation

Plug-ins / Features.
An installed Eclipse package consists of a runtime core and a bunch of additional
plug-ins. Technically, a plug-in is just a special kind of Java archive (JAR file)
that uses and can be used by other plug-ins with regard to OSGi specifications.
Groups of plug-ins that belong together are called a feature.

Sometimes, a user will add plug-ins or features to an Eclipse installation to
add new capabilities. E.g. writing this documentation within my Eclipse IDE is
facilitated by the plug-in Asciidoctor Editor25 . Plug-ins can easily be installed
via main menu command Help → Eclipse Marketplace… or Help → Install
New Software… . Some plug-ins may be self-made like our City Units plug-in that
enables Ecore to deal with physical quantities.

Git.
Git26 is the industry standard for collaborative work on, and versioning of, source
code and other textual data. Collaborative development of parameter catalogs
benefits massively from using Git. Git support is built into Eclipse Modeling Tools,
the Eclipse package we will use. However, if Eclipse needs to connect to a Git
server that uses SSH protocol (not HTTPS with credentials), access configuration
is more involved and may be dependent on your operating system.

Some users, anyway, prefer to use Git from the command line or with one of the
client application listed here27 , e.g. TortoiseGit28 for Windows.

While it is required to get Git working at some point, we won’t refer to it in this
document and, for now, do not cover the installation of Git on your machine or
configuration of Git in Eclipse.

Workspaces.
When you start a new Eclipse installation for the first time, you are asked to
designate a new directory in your file system to store an Eclipse workspace.
Eclipse is always running with exact one workspace open. As the name implies,
a workspace stores everything needed in a given context of work, namely a set
of related projects the user is working on as well as meta-data like preference

25 https://marketplace.eclipse.org/content/asciidoctor-editor
26 https://git-scm.com
27 https://git-scm.com/downloads/guis
28 https://tortoisegit.org

11

https://marketplace.eclipse.org/content/asciidoctor-editor
https://git-scm.com
https://git-scm.com/downloads/guis
https://tortoisegit.org
https://marketplace.eclipse.org/content/asciidoctor-editor
https://git-scm.com
https://git-scm.com/downloads/guis
https://tortoisegit.org

Parameter Catalogs for Simulation

settings, the current status of projects, to do lists, and more. In case a user wants
to work in different contexts, e.g. on different tasks, command File → Switch
Workspace allows to create additional workspaces and to switch between them.

Any plug-in from the original Eclipse package or installed
by the user later will be copied into the Eclipse installation
directory, not in any workspace. Configuration and current
state of plug-ins, on the other hand, are stored in
workspaces.

Projects.
An Eclipse project is a technical term for a directory that often contains:

• files of specific types for source code, scripts, XML files or other data

• build settings, configurations

• dependency definitions (remember the dependencies between plug-ins
above?)

• other Eclipse projects.

File → New → Project… offers many different types of projects that the user
can choose from, e.g. Java projects to create Java programs, Ecore modeling
projects, or general projects, that simple hold some arbitrary files.29

Files that do not belong to a project are invisible for Eclipse!

The projects belonging to a workspace can either be directly stored within the
workspace as sub-directories (the default offered to the user when creating a new
project), or linked from it, that is the workspace just holds a link to the project
directory that lives somewhere in the file system outside of the workspace. Linking
allows to work with the same projects in different workspaces.

While it sometimes makes sense to share or exchange workspaces between
users,30, I do not recommend this for now. Projects, in contrast, are shared

29Projects possess one or more natures used to define a project’s principal type.
30Or even work on the same workspace provided in the cloud, see Eclipse Che [https://
www.eclipse.org/che/technology/].

12

https://www.eclipse.org/che/technology/
https://www.eclipse.org/che/technology/
https://www.eclipse.org/che/technology/

Parameter Catalogs for Simulation

between users most of the time, usually via Git. In general, I would suggest to
store Eclipse projects outside workspaces at dedicated locations in the user’s file
system. That way, we can follow the convention that local Git repositories should
all be located under <userhome>/git.

2.2. Setup Eclipse Modeling Tools

Install Java.
Eclipse runs on 64-bit versions of Windows, Linux, and macOS and requires
an according Java Development Kit (JDK), version 11 or higher, to be installed
on your machine. Even if such JDK already exists, please download OpenJDK,
version 16 or newer for your operating system from AdoptOpenJDK31 . 32 Choose
HotSpot as Java Virtual Machine. Installation process is straight forward, but you
can also find links to exhaustive instructions for your operating system.

New Java versions appear every six months, so one could tend to stick with older
version 11 that comes with long time support (LTE) until next LTE version 17
arrives in autumn 2021. However, actual version 16 conforms to the latest security
measures built into macOS Catalina, so it is a must if software we build here shall
be deployed to these systems, too.

Note that different versions of Java coexist peacefully.

Install Eclipse Modeling Tools.
Now its time to download and install the correct Eclipse package Eclipse Modeling
Tools, version 2021-03 or newer. Please go to Eclipse download page for
packages33 . On this page you may see "Try the Eclipse Installer" or similar. Do
not follow this advice, since we want more control over what versions of Java and
Eclipse shall be installed. Instead, look for package Eclipse Modeling Tools and
follow the link for your operating system on the right:

31 https://adoptopenjdk.net
32AdoptOpenJDK recently joined the Eclipse foundation and soon will change its name to
Adoptium for legal reasons.
33 https://www.eclipse.org/downloads/packages

13

https://adoptopenjdk.net
https://www.eclipse.org/downloads/packages
https://www.eclipse.org/downloads/packages
https://adoptopenjdk.net
https://www.eclipse.org/downloads/packages

Parameter Catalogs for Simulation

Figure 1. Download links for Eclipse Modeling Tools package

Finally, you can click on Download and wait for the 400 something MB package
to arrive.

Depending on the operating system, several security
dialogs have to be acknowledged during installation and
first launch of Eclipse.

The downloaded installation file contains the application simply named Eclipse
ready to be copied into Applications on macOS or be installed in Programs on
Windows. Since later you may add other Eclipse packages — or different versions
of the same package — I suggest to rename the application more significantly to
EclipseModeling2103 or similar.

After installation has finished launch Eclipse for the first time and you will see a
dialog for choosing a new empty directory as its workspace.

Figure 2. Initial Dialog to Choose a Workspace Directory

Again, more workspaces might come into existence later, so replace the
proposed generic directory path and name with a more specific one,
e.g.EclipseModelingWS. The Eclipse main window appears with a Welcome
Screen open. It contains links to exhaustive documentation on concept, features
and usage of Eclipse that might be of interest later, especially:

• Overview

◦ Workbench basics

▪ Concepts: features, resources, perspectives, views, editors

14

Parameter Catalogs for Simulation

▪ Opening perspectives and views

▪ Installing new software manually

◦ Team support with Git

• Learn how to use the Ecore diagram editor

• Launch the Eclipse Marketplace

For now, you can dismiss the welcome screen. It can be opened anytime by
executing Help → Welcome. Now you should see the initial layout of Eclipse with
Model Explorer and Outline on the left and a big empty editing area to the right
with a Properties view below.

2.3. Modeling Parameter Catalogs for Simulation with Ecore

There are two hard problems in computer science: cache
invalidation, naming things, and off-by-1 errors.

— Phil Karlton / N.N.

It takes time and effort to come along with good names for model entities, projects,
files, and so on. Also, specific naming conventions are in place to enhance
readability of models and program code. Since it is not always clear where names
provided during modeling are used later, I compiled a list of names important in
Ecore projects and added examples and comments to elucidate their meaning
and naming conventions.

Table 1. Naming

Name Demo Catalog
Example

Real World Expample

Namespace URI http://example.org/
democatalog

http://hft-stuttgart.de/
buildingphysics

Namespace Prefix democat buildphys

Base Package (reverse
domain)a

org.example de.hftstuttgart

Main Package democatalog buildingphysics

Eclipse Projectb org.example.democatalog.modelde.hftstuttgart.buildingphysics

Class Prefix Democatalog Buildingphysics

15

http://example.org/democatalog
http://example.org/democatalog
http://hft-stuttgart.de/buildingphysics
http://hft-stuttgart.de/buildingphysics

Parameter Catalogs for Simulation

Name Demo Catalog
Example

Real World Expample

XML File Suffix democatalog buildingphysics

Classes e.g. SolarPanel e.g. WindowType

Attributes e.g. nominalPower e.g. id

Associations e.g. solarPanels e.g. windowTypes
ahttps://en.wikipedia.org/wiki/Reverse_domain_name_notation
bhttps://wiki.eclipse.org/Naming_Conventions#Eclipse_Workspace_Projects

Classes are written in Camel case notation34 starting with an upper case letter.
Associations and attributes are written the same way, but starting with a lower
case letter.

All other names should be derived from the globally unique name space of the
project, in our example: example.org/democatalog. It consists of a global unique
domain name and a path to the project, unique within that domain.

Use the names of example Demo Catalog to create your first Ecore modeling
project:

1. Execute File → New → Ecore Modeling Project from main menu — not
Modeling Project!

2. Name the project org.example.democatalog.model and uncheck Use

default location so that the new project is not stored in workspace but a
different directory you create/choose, then click Next >

3. Provide democatalog as main Java package name, uncheck Use default
namespace parameter and provide http://example.org/democatalog as Ns
URI and democat as Ns prefix

4. Click Finish.

Eclipse should look like below with an new empty graphical Ecore diagram editor
opened. The diagram is automatically named democatalog after the package
name for the Java classes that will be generated from it (provided above). The
Model Explorer shows the contents of the new Ecore modeling project.

34 https://en.wikipedia.org/wiki/Camel_case

16

https://en.wikipedia.org/wiki/Reverse_domain_name_notation
https://wiki.eclipse.org/Naming_Conventions#Eclipse_Workspace_Projects
https://en.wikipedia.org/wiki/Camel_case
http://example.org/democatalog
https://en.wikipedia.org/wiki/Camel_case

Parameter Catalogs for Simulation

Figure 3. New Ecore Modeling Project

To get your feet wet, do this:

1. Drag a Class from the palette on the right onto the editor’s canvas: it will
materialize as a rectangle labeled NewEClass1.

2. The class symbol should be selected initially, so you can see its attributes in
the Properties view.

3. In there replace NewEClass1 by EnergyComponentsCatalog to rename the
class.

4. Click anywhere on the canvas and notice that the class symbol is deselected
and the toolbar at the top adapts accordingly.

5. In the toolbar change 100% to 75% to scale diagram.

6. Execute File → Save to save model and diagram on disk.

7. Close diagram editor democatalog by closing its tab.

8. Reopen saved diagram by double click on entry democatalog in Model
Explorer.

Technically, everything is in place now to begin modeling the data that the
projected catalog shall contain. Except … understanding the basics of object-
oriented modeling would be helpful. This is why developers should support
domain experts at this stage.

Model Data with Class Diagrams.

17

Parameter Catalogs for Simulation

Ecore diagrams are simplified UML class diagrams. Here some resources on what
this is all about:

• Toronto Lecture on Object Oriented Modeling35

• UML 2 Class Diagrams: An Agile Introduction36

• UML @ Classroom: Eine Einführung in die objektorientierte Modellierung
(German Book)37

Beginners are strongly encouraged to read the first two
resources. The first one contains a gentle introduction,
especially suited for domain experts. The second one can
also serve as reference.

We will touch central object-oriented concepts Class, Object, Attribute,
Association, Composition, and Multiplicity in an example below, but work through
above sources to get a deeper understanding and to enhance your modeling
skills.

Note that above sources differentiate between conceptual and detailed models.
We go for detailed models, since only these contain enough information to
generate code. Having said this, it is usually a good idea to have two or three
conceptual iterations at a white board to agree on the broad approach before
going too much into detail. But even if one starts with Ecore models right away,
these also can be adapted any time to follow a new train of thought.

See here the essential and typical structure of a parameter catalog in a class
diagram. Instead of artificial example classes like Foo and Bar it shows classes
from an existing catalog, albeit in very condensed form.

35 http://www.cs.toronto.edu/~sme/CSC340F/slides/11-objects.pdf
36 http://agilemodeling.com/artifacts/classDiagram.htm
37 https://www.amazon.de/UML-Classroom-Einführung-
objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?
__mk_de_DE=ÅMÅŽÕÑ&dchild=1&keywords=UML&qid=1585854599&sr=8-2

18

http://www.cs.toronto.edu/~sme/CSC340F/slides/11-objects.pdf
http://agilemodeling.com/artifacts/classDiagram.htm
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
http://www.cs.toronto.edu/~sme/CSC340F/slides/11-objects.pdf
http://agilemodeling.com/artifacts/classDiagram.htm
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2

Parameter Catalogs for Simulation

Figure 4. Principle Structure of a Parameter Catalog

The diagram models four types of technical components whose data shall be
stored in the catalog, e.g. for parameterization of simulation models later: Boiler,
CombinedHeatPower, SolarPanel, and Inverter.

The catalog itself is represented by class EnergyComponentsCatalog. Unlike
dozens, hundreds, or even thousands of objects to be cataloged — Boilers,
Inverters etc. — there will be just exactly one catalog object in the data
representing the catalog itself. Its "singularity" is not visible in the class diagram,
but an Ecore convention requires that all objects must form a composition
hierarchy with only one root object.

Composition.
If, in the domain, one object is composed of others, this is expressed by a
special kind of association called composition. Compositions are depicted as a
link with a diamond shape attached to the containing object. In the Boiler case said
link translates to: The EnergyComponentsCatalog contains — or is composed
of — zero or more (0..*) boiler objects stored in a list named boilers.

Note that class names — despite the fact that they model
a set of similar objects — are always written in singular!
Names for list-like associations and attributes usually are
written in plural form.

Inheritance.

19

Parameter Catalogs for Simulation

Besides composition of objects, the model above shows another, completely
different, kind of hierarchy: the inheritance hierarchy between classes. Whenever
classes of objects share the same attributes or associations, we don’t like to
repeat ourselves by adding that attribute or relation to all classes again and again.
Instead, we add a super class to define common attributes and associations and
connect it to sub classes that will automatically inherit all the features of their
super class.

In our example above, common to all four energy components are attributes
modelName and revisionYear, thus these are modeled by class EnergyComponent
that is directly or indirectly a super class of Boiler, CombinedHeatPower,
SolarPanel, and Inverter. Similar, Boiler and CombinedHeatPower share attribute
installedThermalPower factored out by class ChemicalDevice. SolarPanel and
Inverter share attribute nominalPower modeled in abstract class ElectricalDevice.

Associations.
You probably noticed a fifth type of objects contained in the catalog, namely
Manufacturer objects stored in list manufactureres. How come? Ok, here is the
story:

20

Parameter Catalogs for Simulation

Domain Expert Meets Developer

Exp: “I’d like to store a component’s manufacturer. Shall I add a String
attribute manufacturerName to all classes like Boiler, Inverter and so on to
store the manufacturer’s name?”
Dev shudders: “Well, what do you mean by "… and so on"?”
Exp: “Basically, I mean all energy components.”
Dev: “Fine. We already have a class representing all those energy
components, brilliantly named EnergyComponent. Thus, we can define
manfacturerName there, following one of Developer’s holy principles:
"DRY — Don’t repeat yourself!" By the way: Is the name all you want to
know about manufacturers?”
Exp: “Mhm, maybe we need to know if they are still in business …”
Dev: “… or even since when they were out of business, if at all …”
Exp: “… and the country or region they are active.”
Dev: “Ok, so it’s not just the name — we need a class Manufacturer to
model all these information.”
Exp sighs.
Dev: “Come on, its not that hard to add a class to our data model, isn’t it?”
Exp: “Ok, but how can we express what components a manufacturer
produces?”
Dev: “Wasn’t it the other way around? I thought, you just wanted to know
the manufacturer of a component?”
Exp: “What is the difference?”
Dev: “In data modeling, it is the difference between a uni-directional and
a bi-directional association.”
Exp: “…?”
Dev: “Let’s put it that way: The difference between a link with an arrow on
one side or on both sides.”
Exp: “Ok. We don’t need a list of components per manufacturer, but simply
a reference from the component to its manufacturer.”
Dev: “Fine, then in Ecore please create a simple reference from class
EnergyComponent to class Manufacturer, maybe named producedBy.”
Exp: “I will try this and get back to you.”
Dev: “Fine … good meeting.”

21

Parameter Catalogs for Simulation

Observe in our data model, reference producedBy points from EnergyComponent
to Manufacturer making it uni-directional reference. One can simply query the
manufacturer of a product, but not the other way around. With a bi-directional
reference both queries would be available.

Observe also the annotations 0..* and 1..1 near class Manufacturer. These are
multiplicities of associations: An EnergyComponentsCatalog contains zero, one,
or many objects of class Manufacturer and an EnergyComponent must reference
exactly one manufacturer — not less, not more.

Figure 5. Ecore Relations

To recapitulate: Our example parameter catalog already exhibits all four types
of relations provided by Ecore. You find these in the Ecore editor’s palette
shown here. To create a relation between a sub class and a super class use
tool SuperType. Use the other tools to create an association between classes,
may it be a simple (uni-directional) reference, a bi-directional reference, or a
composition.

Attributes and Enumerations.
Obviously, attributes are central in data modeling. Create one by dragging it from
the palette onto our one and only class so far: EnergyComponentsCatalog. The
class symbol will turn red to indicate an error. Hover with the mouse pointer over
the new attribute and a tooltip with a more or less helpful error message will
appear. Current error is caused by that no data type was set for the new attribute.
Data types for attributes can be integer or floating point numbers, strings, dates,
booleans, and more. To get rid of the error:

1. If not already selected, select new attribute by clicking at it in the editor.

2. In view Properties find EType and click button … to see a quite long list of
available data types.

3. Choose EString [java.lang:String] from the list and the error is gone.

22

Parameter Catalogs for Simulation

Figure 6. Class with Attribute

Change the attribute’s name to author and the class should look like shown here.

Most data types to choose from begin with letter E like in Ecore. These are just
Ecore enabled variants of the respective Java types, thus, choose EInt for an int,
EFloat for a 32 bit floating point number, EDouble for a 64 bit one, and so on.

Ecore allows to introduce new data types. We employ this feature later to enable
data models with physical units and quantities.

There exists one other means to define the values an attribute can take,
namely enumerations of distinct literals. Take Monday, Tuesday, Wednesday, …
 as a typical example for representing weekdays. In our example data model
you’ll find one Enumeration named BoilerType with values LowTemperature and
Condensing.

Homework.
The next section deals with generation of Java code from data models. To have
more to play with, please implement our example model in Ecore now.

Figure 7. Abstract Class

To do this, there is one more thing to know about classes: the difference
between ordinary classes and abstract classes. 'Ordinary class' doesn’t sound
nice, therefore, classes that are not abstract are called concrete classes. Our
example diagram depicts abstract classes with letter A while concrete classes are
labeled with C. You add abstract classes to a model with a special palette tool
shown here.

The thing is: Objects can be created for concrete classes only!

In our example, it makes no sense to create an object from class
EnergyComponent, because there is not such a thing like an energy component

23

Parameter Catalogs for Simulation

per se. Therefore, this class is abstract. It is true that an inverter is an energy
component, thus inheriting all its features, but it was created as Inverter, not as
EnergyComponent.

Super classes will be abstract most of the time. So my advice is: Model a super
class as abstract class unless you convince yourself that there exist real objects
in the domain that belong to the super class but, at the same time, do not belong
to any of its sub classes. In the Ecore editor properties view, you can specify if a
class is abstract or not, simply by toggling check box Abstract.

Two more tips and you are ready to rock and roll! — At least with your homework.

An exhaustive user manual for Ecore diagram editor is
available. Execute Help → Welcome and follow link Learn
how to use the diagram editor.

If Ecore models get bigger, you may find it more convenient
to work with a form based UI instead of, or in addition to, the
diagram editor. Open this kind of editor via command Open
With → Ecore Editor from the context menu over entry
democatalog.ecore in the Model Explorer view. Note that
Eclipse synchronizes different editors of the same content
automatically.

2.4. Generation of Java Code from Data Model

By now, your Ecore model should look like this:

24

Parameter Catalogs for Simulation

Figure 8. Example Model (Homework)

Let us bring the model to life, that is, generate code from it that creates, reads,
updates, and deletes concrete data objects of modeled classes in computers. I
would like to tell you that this is done with just one click but, actually, you need
two or three:

1. Make sure all files are saved (File → Save All)

2. Execute Generate → Model Code from the context menu of Ecore editor
democatalog

3. Execute Generate → Edit Code from the same context menu

Please do not execute Generate → All or Generate →

Editor Code.

This would create code for a simple user interface, but
we use more advanced EMF Forms for that later. If,
by mistake, project org.example.democatalog.editor was
created, just delete it from Model Explorer and do not forget
to check Delete project contents on disk in confirmation
dialog.

25

Parameter Catalogs for Simulation

Figure 9. Generated Classes

Generate → Model Code creates classes that represent the modeled data in
code. These classes are located in three packages under directory src-gen in
org.example.democatalog.model.

Generate → Edit Code creates a whole new Eclipse project named
org.example.democatalog.edit, again with generated classes under directory
src-gen.

You may have a look at some Java classes for curiosity by double clicking at them
in Model Explorer. There is no point in trying to understand the code in detail,
but observe token @generated present in the comments of all classes, fields and
methods. Classes, fields and methods marked with this token are (re)generated
whenever above commands are executed.

Sometimes it maybe required to manually adapt generated code — after all our
concern is "low code", not "no code" development. In that case, we will replace
@generated by @generated NOT to prevent code regeneration.

After code generation, you may have noticed some warnings showed up in view
Problems.

Figure 10. Warnings

In general, it is highly recommended to resolve warnings, and errors of course,
but we will make an exception from the rule, since the warnings are uncritical and
would reappear each time code is regenerated.

26

Parameter Catalogs for Simulation

2.5. Generation and Tweaking of User Interface

In this section you will learn how to generate and tweak a CRUD user interface
based on Ecore data model and Java classes created for our demo parameters
catalog above. Topics described here are discussed in more detail in tutorial
Getting started with EMF Forms38 . To find out what user interface controls and
layouts are provided by this framework have a look at EMF Forms – View Model
Elements39 . EMF Forms is already part of package Eclipse Modeling Tools, so
we can create a third Eclipse project/plugin that implements a user interface for
editing catalog data without further ado:

1. In the Model Explorer execute EMF Forms → Create View Model Project
from context menu over democatalog.ecore

2. Leave project name org.example.democatalog.viewmodel as is but uncheck
Use default location — as we always do — and browse to the directory
containing org.example.democatalog.model

3. Click Next > and select EnergyComponentsCatalog as data element we want
to create a user interface for

4. Leave Fill view model with default layout checked and click Finish.

According to these inputs a new project is created with file
EnergyComponentsCatalog.view under directory viewmodels. This file opens
automatically in a special View Editor.

Figure 11. New View Model

Like the data of our catalog are modeled as Ecore file using a dedicated graphical
editor, so will our catalog’s user interface be modeled in .view files, again using
a special editor.

38 https://eclipsesource.com/blogs/tutorials/getting-started-with-EMF-Forms/
39 https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements/

27

https://eclipsesource.com/blogs/tutorials/getting-started-with-EMF-Forms/
https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements/
https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements/
https://eclipsesource.com/blogs/tutorials/getting-started-with-EMF-Forms/
https://eclipsesource.com/blogs/tutorials/emf-forms-view-model-elements/

Parameter Catalogs for Simulation

Since we opted for Fill view model with default layout the catalog’s
UI is filled initially with default controls for all data items assigned to Ecore
type EnergyComponentsCatalog like a string control for author or list controls for
boilers, chps, and so on.

See red arrow in the above screen-shot? It points to a button that opens a
functional preview of the modeled user interface.

Figure 12. User Interface Preview

Double click on tab EMF Forms Preview to enlarge view for
better handling — double click again to get back.

Enable auto refresh mode to let each change in the view
model instantly be reflected in the preview.

Given your screen is big enough, you may want to dock-
out the preview by dragging tab EMF Forms Preview out
of Eclipse’s main window. Seeing editor and preview side
by side is a great way to explore the possibilities of view
models.

Red input field and exclamation mark in the preview signal missing or inconsistent
data. Ecore data model specifies attribute author with a lower bound of one,
meaning it is a mandatory attribute. As soon as an author’s name is provided,
the error indication disappears. This is what functional preview means. You can
even create new boilers or other objects in lists provided, with all forms created
"automagically" with respect to our underlying Ecore data model.

Of course, such automatic approach has its limits. In our case, a long list of lists
is not very user-friendly, because one has to scroll up and down to find a specific
list. Also, no specific object data are shown in the list and data can only be edited
in a pop-up form (no inline editing).

How should a better UI look and feel like?

If there are many lists (types) of entities — the normal case for parameter
catalogs — users should select what list they want to work with by selecting it from

28

Parameter Catalogs for Simulation

a list or tree view that is always visible, the master view. Once a type is selected
in the master view, a table with all objects of this list/type shall appear sidelong
in a detail view, ready for editing.

In EMF Forms master-detail-views can be modeled either with Categorization or
Tree Master Detail UI components. The latter not only allows to edit information
displayed in the detail view, but also the tree of elements in the master view.
Opposed to that, a Categorization presents a fixed hierarchy of elements to
choose from. This is exactly what we need as there are only a fixed number of
types of objects to be edited in a parameters catalog.

Adding Tables to the UI

Figure 13. Delete default list controls

But first, we replace the default controls for lists of boilers, chps, and so on by
tables. As shown here, select all list controls in the view model and execute Delete
from context menu. Refresh View Editor Preview to verify that only field Author*
is left.

Figure 14. Create Table Control

Next, create a table that shall display all boilers in a catalog: Select
EnergyComponentsCatalog, activate context menu and choose TableControl
from the list of available UI elements. (EnergyComponentsCatalog represents the
root view of the UI and, as such, accepts quite a lot of different UI components
as child components.)

Entry TableControl was inserted into the list of interface elements below
Control author. Checking updated preview reveals no table but a message
basically saying that a reference to the domain model is missing, in other words:

29

Parameter Catalogs for Simulation

EMF Forms does not know yet what data to present in table. Click on entry
TableControl to see its details. A red exclamation mark indicates the missing

Domain Model Reference*. Click on and be ready to chase a sequence of
dialogs:

1. Click on another in dialog Configure TableDomainModelReference

2. In wizard New Reference Element select model →

FeaturePathDomainModelReference and click Next >

3. Click Link Domain Model EFeature and in appearing pop-up list choose
reference to list of objects you want to edit in the table, e.g. boilers; confirm
with OK safely ignoring warning about missing PropertyDescriptor.

4. Finish wizard New Reference Element

5. Finish dialog Configure TableDomainModelReference.

This was some work, but as reward we get a fully specified table control in View
Editor that "translates" into a preview where we can create, read, update, and
delete boilers.

Figure 15. Table for Boilers

Moreover, clicking at a table header sorts all objects in it (rows) according to the
values in this column. Column widths can adapted, too.

30

Parameter Catalogs for Simulation

Figure 16. Modify Table Control

Table UIs can be tweaked in many ways, e.g. selection and sequence of columns
can be declared via list Column Domain Model References. To fill this list with
defaults, execute Generate Columns from table control’s context menu. Reorder
them as you like or delete columns that are not important to the user.

Notice here an important overall feature of EMF Forms: If something is left
unspecified, be it the view model for an Ecore object type or the specification of
table columns, EMF Forms will always find a default solution! Applied to columns
specification this means we get default columns automatically back in the moment
the last column is removed from list Column Domain Model References.

If explicit column specifications are present further configurations can be added
to a table control from its context menu, e.g. initial column widths or read-only
status of columns. See here40 for details.

By default only attributes are displayed and directly editable in tables while
references to other objects — in our case the reference to a manufacturer — are
not.

Figure 17. Default Panel for Boilers

To get the default (sic!) editing panel for an selected table row, in View Editor just
set Detail Editing* from None to WithPanel, press Tab, and save. For boilers,
EMF Forms will create the editing panel shown here. Regardless wether users
edit data in the panel or directly in the table — both will stay in sync any time.

40 https://eclipsesource.com/de/blogs/2018/01/31/emf-forms-1-15-0-feature-enhanced-table-
renderer/

31

https://eclipsesource.com/de/blogs/2018/01/31/emf-forms-1-15-0-feature-enhanced-table-renderer/
https://eclipsesource.com/de/blogs/2018/01/31/emf-forms-1-15-0-feature-enhanced-table-renderer/
https://eclipsesource.com/de/blogs/2018/01/31/emf-forms-1-15-0-feature-enhanced-table-renderer/

Parameter Catalogs for Simulation

View editor exhibits an irritating behavior: With preview
auto-refresh turned on, any change in the details view is
reflected instantly in the preview, even without saving the
form or leaving the edited field.

On the other hand, saving an updated view editor only
takes into account edited fields after they have lost focus,
e.g. by pressing Tab key or clicking with the mouse into
another field. So, saving a form before the focus has shifted
from the last edited field won’t honor this edit, that is you
won’t necessarily get what you see.

One last thing: Enter boilers as name for the table control so we can distinguish
it from the other four table controls to come.

Yes! … Please repeat above procedure to create table controls for chps, solar
panels, inverters and manufacturers, too. I did this in about 3 minutes. ;-)

Master-Detail View with Categories

In last section we improved our catalog’s UI by replacing simple object lists by
tables that can be sorted, customized and edited inline as well as in an associated
panel. Alas, instead a list of lists we have got an even bigger list of tables.

High time to introduce a master-detail view that presents categories of object
types in a master view and, after one is selected, the according object table in
the detail view.

Figure 18. Category Tree

Add a Categorization view to the list of UI elements in View Editor by selecting
EnergyComponentsCatalog and choose Categorization from its contect menu.

Now add two Composite Category elements and one Leaf Category to
Categorization from according context menu. This gives us three top level
entries in the hierarchy.

32

Parameter Catalogs for Simulation

In the same way add two Leaf Category elements to each Composite Category
resulting in the hierarchy depicted here.

Figure 19. Completed View Model

This screen shot shows the view model of our UI when finished. To get there:

1. Select UI element Categorization and rename it to Categories

2. Rename composite and leaf categories as depicted here

3. Drag all table controls one by one into the suited leaf category

4. Confirm master-detail view works as expected in the preview.

The UI hierarchy to access tables for entity types is
independent, and usually will differ, from aggregation
and inheritance hierarchies present in Ecore data model
(compare fig. Example Model).

Note that EMF Forms Preview provides these buttons to clear, load and store
edited data. In fact, this feature gives us a fully functional prototype. At least
during refinement of model and UI, data sets can be created, edited, and tested
for usability without the need to built a full blown, deployable application — see
parts Accessing and Using Parameter Catalogs and Build (Parameter Catalog)
Applications with Eclipse Tycho below.

Be aware that in some cases the view model must adapt to changes in data model,
e.g. a new leaf category and table component must be created for a new catalog
object type. Other changes are automatically reflected in the generated UI, at
least for default forms and default table columns. To our convenience, view model
specifications incompatible with data model are indicated by error badges in the
View Editor.

Changes in data model also can make existing XML data incompatible. There are
tools for data migration, but for now, recreation of test data or manual editing of
XML file is the way to go.

33

Parameter Catalogs for Simulation

2.6. Add Units to the Mix

As mentioned earlier, parameter catalogs should be able to represent quantities,
not just bare numbers. See Unit of measurement libraries, their popularity and
suitability41 for a systematic account of open source solutions in the this area.

Java provides an extensive framework to deal with quantities and their
units defined in Java Specification Request (JSR) 38542 . The reference
implementation for this framework is Indriya43 . Demos of its usage can be found
at https://unitsofmeasurement.github.io/uom-demos/.

To make Indriya available Ecore data models and EMF Forms, the
author has created two plug-ins that can easily be added to Eclipse.
To do so, open dialog Help → Install New Software… and
enter site https://transfer.hft-stuttgart.de/pages/neqmodplus/indriya-
p2/release_target_211/ like depicted below.

Figure 20. Install Plug-in from Specific Update Site

Select Indriya plug-in, press Next > and acknowledge all following dialogs,
including security warnings.

Do the same for the City Units plug-in available
at site https://transfer.hft-stuttgart.de/pages/neqmodplus/de.hft-

stuttgart.cityunits/release_target_101/ Finally, restart Eclipse to complete
plug-in installation.

While the first plug-in installs Indriya, the second plug-in adds some specific units
for urban simulation, EMF Forms editor fields for quantities, and Ecore types used
for modeling quantities as attributes of classes.

Make the new Ecore types QuantityLong and QuantityDouble available like so:

41 https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
42 https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/
edit#heading=h.6698n7erex5o
43 https://unitsofmeasurement.github.io/indriya/

34

https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/edit#heading=h.6698n7erex5o
https://unitsofmeasurement.github.io/indriya/
https://unitsofmeasurement.github.io/uom-demos/
https://transfer.hft-stuttgart.de/pages/neqmodplus/indriya-p2/release_target_211/
https://transfer.hft-stuttgart.de/pages/neqmodplus/indriya-p2/release_target_211/
https://transfer.hft-stuttgart.de/pages/neqmodplus/de.hft-stuttgart.cityunits/release_target_101/
https://transfer.hft-stuttgart.de/pages/neqmodplus/de.hft-stuttgart.cityunits/release_target_101/
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/edit#heading=h.6698n7erex5o
https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/edit#heading=h.6698n7erex5o
https://unitsofmeasurement.github.io/indriya/

Parameter Catalogs for Simulation

1. Open Sample Ecore Model Editor from the context menu over your Ecore
model

2. From the context menu in this editor, execute Load Resource… and then
Browse Target Platform Packages…

3. Select package https://www.hftstuttgart.de/quantities and confirm
the addition of platform:/resource/de.hftstuttgart.cityunits.model/
model/Quantities.ecore.

Figure 21. Set QuantityDouble Type

From now on, the new attribute types are available to model quantities with integer
or floating point values as can be seen on the screenshot to the right.

Note here, that I also changed the default value from 0.0 to 0.0 V to indicate that
maxDCVoltage of inverters is given in Volt.

The symbols for defining units follow SI and other standards, including decimal
prefixes like m for Milli or G for Giga as well as derived units, that is: mV, GV
or kW·h/m³ are all valid unit definitions. This is all documented well in the
resources mentioned at the top of this section, but for convenience, a table with
valid units, including some specific units for urban simulation, is compiled in
UnitsExamples.md.

If a unit symbol cannot be interpreted, this error is not already detected while
generating and compiling code from model, but not before run time when the
application tries to create the default value. In that case, you will see an error
message like this:

35

https://www.hftstuttgart.de/quantities
UnitsExamples.md

Parameter Catalogs for Simulation

Figure 22. Error Message for Wrong Unit Definition

Be told that each attribute of type QuantityLong or
QuantityDouble has to have a unit defined in its Default
Value Literal, even optional attributes that do not require
a numerical value to be set. For these, too, the Ecore model
must specify the unit to use.

In other words: If you do not want to preset an attribute with
a numerical default, you can omit the numerical part, but still
must provide the unit symbol as Default Value Literal,
e.g. V will work as well as 1.0 V but leaving the numeric
value initially undefined.

One last technicality. Before code from an Ecore model with attributes of type
QuantityLong or QuantityDouble can be generated correctly, we must tell Eclipse
to reuse the corresponding generator model from the City Units plug-in:

1. In package or project explorer find your generator model, e.g.
democatalog.genmodel and execute Reload… from its context menu

2. Choose Ecore model, press Next > and Load the model (again)

3. Next > will open the page below. In section Referenced Generator Models
select the Quantities generator model as depicted and click on Finish.

Figure 23. Add Reference to Imported Generator Model

If no generator model is available for selection, press button Add… to add it first
(this only works if QuantityLong or QuantityDouble were used at least once in
the Ecore model).

36

Parameter Catalogs for Simulation

2.7. Summary

Congratulations on making it this far. What have we achieved?

We get to know the Eclipse Modeling Tools IDE and created a graphical Ecore
data model with one catalog class and five classes/types of domain objects
therein. Classes have been defined by name, attributes, and relationships
between them, often with cardinalities. Whenever classes shared some attributes
or relationships we factored these out into super classes. An enumeration
introduced a new attribute type as a set of named values.

From this data model, we issued commands to create Java code for representing
the data in memory as well as to store and retrieve them on and from disk.
Methods to create, read, update and delete data objects (CRUD) were generated,
too.

We reflected on a good user interface for this data and used EMF Forms to model
such an interface resulting in a full functional prototype.

Lastly, we enhanced Eclipse, Ecore and EMF Forms with two plug-ins for
modeling, editing and persisting physical quantities as numerical values with
defined units.

37

Parameter Catalogs for Simulation

3. TBD: Accessing and Using Parameter Catalogs

3.1. Accessing XML-Catalogs from Java

3.2. Create Insel Models with Handlebars Templates

3.3. Accessing XML-Catalogs from Python

38

Parameter Catalogs for Simulation

4. TBD: Distribution of Parameter Catalogs

Three plugins so for for the content and UI.

Missing: Deployable application and inclusion to third party libraries.

Building an application "around" the three plugins for Ecore data model and UI
specification model.

4.1. Create an Eclipse Application

4.2. Use Maven and Tycho as Build System

Install Maven Support.
We are going to create a complete Eclipse desktop application from generated
code. We also want to deploy this application for Linux, macOS and Windows
operating systems. Eclipse offers several approaches for compiling and deploying
such an application, traditionally with Ant scripts.

Creation and maintenance of these scripts turned out to be tedious
and error prone. For quite some years now, the proposed — and mostly
supported — method for building Eclipse applications is to use Maven build
system, more specifically, a couple of Maven plug-ins, subsumed under the name
Tycho.

Many Eclipse platforms have Maven support M2Eclipse44 already built in, not so
our Eclipse Modeling Tools. But don’t worry: Installation of required Eclipse feature
is easy and straight forward. And, by the way, you will acquire the indispensable
skill of how to install new plug-ins/features to Eclipse.

First, tell your Eclipse installation where to look for the new software. Execute
Help → Install new Software… to invoke dialog Available Software and press
Add… . Sub-dialog Add Repository pops up.

44 https://www.eclipse.org/m2e/

39

https://www.eclipse.org/m2e/
https://www.eclipse.org/m2e/

Parameter Catalogs for Simulation

Figure 24. Add update site m2e

In there provide m2e as name and

http://download.eclipse.org/technology/m2e/releases

as location. After confirmation with Add, choose the new site to Work with: Eclipse
now looks up the site for available software.

Figure 25. Choose features to install

Provided Group items by category is checked, above features are displayed.
Check all features and confirm all following questions about licenses and security
concerns. After download is complete — it can take a few minutes — restart
Eclipse. Verify that Maven version 3.6.3 or above is now installed in Window
→ Preferences… (or Eclipse → Preferences… on macOS) under Maven →

Installations.

Figure 26. Check Maven installation

Add third party Java libraries.
"Correct" way to add third party Java libraries as plugins

40

Parameter Catalogs for Simulation

Example Indriya

4.3. Deploy to P2 Repository

4.4. Versioning and Collaboration

41

42

	Parameter Catalogs for Simulation
	1. Introduction
	1.1. The Bigger Picture
	1.2. Lessons Learned
	1.3. Low-Code-Development of Parameter Catalogs

	2. How to Implement Parameter Catalogs with Eclipse
	2.1. Eclipse Basics
	2.2. Setup Eclipse Modeling Tools
	2.3. Modeling Parameter Catalogs for Simulation with Ecore
	2.4. Generation of Java Code from Data Model
	2.5. Generation and Tweaking of User Interface
	Adding Tables to the UI
	Master-Detail View with Categories

	2.6. Add Units to the Mix
	2.7. Summary

	3. TBD: Accessing and Using Parameter Catalogs
	3.1. Accessing XML-Catalogs from Java
	3.2. Create Insel Models with Handlebars Templates
	3.3. Accessing XML-Catalogs from Python

	4. TBD: Distribution of Parameter Catalogs
	4.1. Create an Eclipse Application
	4.2. Use Maven and Tycho as Build System
	4.3. Deploy to P2 Repository
	4.4. Versioning and Collaboration

