
Parameter Catalogs for
Simulation

Kai-Holger Brassel, Hamburg, <mail@khbrassel.de>
This work by Kai-Holger Brassel, Hamburg, is licensed under CC BY-NC-ND 4.01

Non-final version: September 7st, 2021.

Go to PDF-Version as of September 7th, 20212

1. Introduction

This introduction talks about the work of the author and
others, but without bibliographic references. Currently, it
is just meant as background to better understand the
technical documentation in the sections to follow. Maybe it
could be developed into a more serious paper later.

Simulation of energy supply and consumption of buildings at the level of districts
or even cities not only requires elaborated algorithms but also careful design of
model structure and parameters. Structural aspects include building geometry as
well as arrangement of buildings, e.g. to take shadowing and heat transfer into
account. Assigning usage patterns or energy components like heat pumps, PV,
boilers, etc. to specific buildings also count as structural aspects of a simulation
model. Moreover, this multitude of model entities has to be defined in more detail
by lots of numeric, ordinal or nominal parameters. Our experience with developing
simulation systems like INSEL and SimStadt showed that manual parametrization
based on informal data collections, typologies, spreadsheet tables, etc. from
different sources is tedious and often hard to reproduce. Instead, parametrization
of complex models should be supported by software providing formally defined

1 https://creativecommons.org/licenses/by-nc-nd/4.0
2 ParameterCatalogs.pdf

1

https://creativecommons.org/licenses/by-nc-nd/4.0
ParameterCatalogs.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0
ParameterCatalogs.pdf

Parameter Catalogs for Simulation

parameter catalogs, that are systematically created and updated by domain
experts.

Parameter catalogs and the software to create, maintain and deploy them
should be independent of any specific simulation software to enhance software
modularity (separation of concerns). Ideally, modelers can enhance their
simulation environment by adding suited parameter catalogs as software plug-ins
and use them to parametrize model entities easily, e.g. via drag and drop.

Automatic parametrization of components in simulation models requires a formal
data model which fits the simulation models in terms of content and structure
and can pass information to them. Self-contained parameter catalogs fulfill this
requirement by providing an application programmers interface (API) that can be
queried for automatic, rule-based parametrization of simulation models.

To get good results fast, close collaboration with domain experts and short
development cycles are desirable. We achieved this by exploiting techniques
of so called low code development. Basically this means that domain experts
encode their knowledge into a graphical diagram defining types of components,
their relations, and attributes. From this diagram, program code for storing and
manipulating data sets in main memory as well as code to write and read that
data to and from XML files (or data bases) are automatically generated. A
modern graphical user interface to create, read, update, and delete data (CRUD
operations) can also be provided with no or very few lines of manually written
code.

The overall motivation for the work on parameter catalogs for simulation is to make
easier to develop and perform computer simulations in complex and data rich
domains like building physics, transportation, and all kinds of urban infrastructure.

1.1. The Bigger Picture

A good part of computer science was and is driven by the motivation to make
it easier to develop computer programs of all sorts. "Higher" programming
languages were invented to make programs human readable and soon special
constructs for functional programming (computation without side effects) and
structured programming (computation without go to statements) were introduced
to help programmers writing and understanding ever growing programs. Then,
between 1962 and 1967, program language Simula was developed especially

2

Parameter Catalogs for Simulation

to deal with the challenges of simulating systems comprising of many different
types of objects. This opened the door to more direct computer representations of
real world objects, their attributes, relationships and behavior, ultimately leading
to object-oriented software development that today is embodied in programming
languages like Java, C++, Python, and graphical notations like the Unified
Modeling Language (UML).

While these achievements had boosted the productivity of software developers,
still the creation of correct, efficient and maintainable programs — including
simulations — required a big deal of expert knowledge and experience. To
overcome this bottleneck, starting in the 70s, so called 4th generation languages
entered the stage. These languages were tailored to specific tasks like statistics
("S" 1976, "R" being its successor), database programming (SQL 1979), or
simulation (MATLAB around 1979, Mathematica 1988, Modellica 1999) to name
a few. By sacrificing generality, these special languages become more accessible
to domain experts, not just trained software developers. To flatten the learning
curve even more, formal graphical languages for special purposes were invented,
e.g. Simulink for block diagram simulation models in 1984, Entity-Relationship-
Diagrams for data modeling in 1976, UML for object-oriented systems design
in the 1990s, or graphical languages to specify business and also scientific
workflows around 2000.

This very short history of technologies for development of software in general,
and simulations in particular, shall illuminate the tools at our disposal:

• general purpose programming languages that combine structured, functional
and object-oriented approaches to enable the creation of big, modular software
systems, often called "programming in the large"

• formal textual domain specific languages (DSLs) dedicated to solve specific
tasks with ease

• formal graphical DSLs.

Note that DSLs more tend to describe what shall be achieved by a computation
instead of describing in detail, how to achieve it. Therefore, DSLs usually look
more like a model than like an algorithm.

Now back to the task at hand.

3

Parameter Catalogs for Simulation

Some domains deal with a few types of simple objects to be simulated. Take the
building blocks of an electric circuit as an example. The algorithms to simulate
these correctly and efficiently may be quite complex — the model elements
usually can be described by very few parameters like resistance or capacity. More
complex domains like (regenerative) energy systems or building physics deal
with more complex objects to be simulated, e.g. PV modules or layered walls
of buildings, often coming in different types and configurations, and dozens of
possibly interdependent parameters.

1.2. Lessons Learned

First a note on terminology: Instead of parameter catalogs in SimStadt we used
term library like in building physics library. Obviously this was not a good choice,
since library is used a lot in IT and programming with all sorts of meaning. Instead
we started to talk about data catalogs, but in data science this term has specific
meaning, namely: catalogs of data and data sources. Since our catalogs, first of
all, shall grant structured access to parameters for simulated entities parameter
catalog sounds more appropriate to me.

The problem of navigating huge parameter spaces and assembling complex
simulation models popped up as the author worked on a diagram editor for INSEL,
a simulation language and runtime environment developed for renewable energy
systems simulation. To make existing catalogs on weather data, solar panels
and inverter modules accessible to the modeler, special dialogs were added
to the INSEL user interface that allowed browsing through the catalogs. Using
this browsers, the modeler would choose a weather station, panel or inverter to
parameterize a corresponding INSEL function-block. However, there are some
severe disadvantages with this approach:

1. Parameter catalogs were stored in a proprietary data format on disk within the
INSEL application distribution, meaning they could not used independently
from INSEL by other interested parties (systems or users).

2. The catalogs have to be maintained by editing text files manually.

3. While INSEL modeler could browse the catalogs, searching and sorting were
not supported.

4

Parameter Catalogs for Simulation

4. Development of Java Swing UIs for the different kind of catalogs is time
consuming as is their maintenance, e.g. if a catalog data format were to
change.

5. Putting UIs to handle big amounts of data into a diagram editor is not very
user friendly.

From 2013 to 2016, the simulation platform SimStadt was developed to make
specific modeling and simulation workflows accessible to experts in urban
planning and energy systems. Using INSEL and other simulators under the hood,
the usage of 3D city data, provided as CityGML files, was a core requirement of
this project.

To enable simulation of, say, the heating demand of a district, geometric building
data had to be enriched with data on building physics and usage. To do so, existing
informations about building physics and usage — often only available as informal
typologies or tables — had to be provided to the SimStadt user on an abstract
level, e.g. to choose between refurbishment scenarios. At the same time, specific
building configurations and parameter sets had to be injected into the simulation
models to obtain the desired results.

Again, we implemented parameter catalogs to fulfill these requirements, but
compared to the quite simple catalogs used in INSEL, the data for building
materials, window, wall and roof types as well as the typologies of buildings,
households, usage patterns, and so on were more intricate. They had to be
created iteratively in collaboration with domain experts. In this situation, manual
coding data formats and access with a general programming language would
have led to relatively long iteration cycles and high communication effort between
programmer and domain expert. Instead, we decided to use a DSL for data
modeling and use code generation whenever possible. Since SimStadt was
developed within the Java eco-system we followed this standard approach:3

1. Developer and domain expert create a first version of the data model as XML
Schema Definition (our DSL).

2. For plausibility checks one would use any standard XML editor to create
example data conforming to the XSD.

3A similar approach is in use to standardize extensions to CityGML via so called application
domain extensions (ADE) like the energy ADE for exchanging energy related data.

5

Parameter Catalogs for Simulation

3. With JAXB (Java Architecture for XML Binding) Java code is generated to read
our XML catalogs into Java objects that, in turn, can be accessed by SimStadt
workflows to generate and parameterize simulations.

4. If required, developer and domain expert go back to step one to refine data
model and catalog data.

After the data model for building physics catalogs had matured, we developed a
desktop application for convenient creation and maintenance of building physics
data catalogs separate from SimStadt. It was developed in Java with a user
interface written in JavaFX and was well received by domain experts.

However, as a different catalog — this time for building usages — had to be
created, it was quite difficult to reuse the XML schema and application code from
the building physics catalog: The usage catalog data model was "pressed" into
a form similar to the building physics catalog data model, and the UI code was
"over-engineered" to accommodate both catalog’s requirements.

1.3. Low-Code-Development of Parameter Catalogs

From INSEL and SimStadt we learned, that manual and automatic construction
and parameterization of complex simulation models with many types of
interrelated objects should be supported be the means of domain specific
parameter catalogs.

Close collaboration with domain experts in designing and implementing these
catalogs in short development cycles is desirable.

Parameter catalogs and the software for their creation, maintenance and
deployment should be independent of any specific simulation software, (a) to be
reusable and (b) not to overload simulation applications.

In SimStadt, catalog development was partly facilitated by a textual DSL for
data modeling (XML schema language) and automatic generation of Java code
from it. On the other hand, user interfaces and generation and parameterization
of simulations from templates within SimStadt workflows had still to be coded
manually hindering the routinely creation of new catalogs.

Now, in 2020, several developments in different projects provide an opportunity
to re-think the topic of parameter catalogs for simulations, namely:

6

Parameter Catalogs for Simulation

1. Plans for a new Urban Simulation Platform at Concordia University, Montreal.

2. New implementation of INSEL user interface based on the Eclipse application
framework and Eclipse-Sirius diagram editors.

3. Enhancement of existing building physics and usage catalogs from SimStadt
and their adaptation to new regions.

4. Development of a new comprehensive catalog of electric systems
components to be used in SimStadt as well as in Concordia’s Urban
Simulation Platform.

In what follows, the new technology stack used to implement (4) is documented
in detail. It uses four technologies to replace manual coding by code generation
from models:

• Ecore to model the catalog’s data and generate Java classes and persistence
layer from it.

• Eclipse Sirius for modeling and generating tables, forms and buttons to create,
read, update, and delete data (CRUD).

• E4, the Eclipse way of modeling the application user interface itself, e.g. the
placement and behavior of views, editors, toolbars, menus, and more.

• A template engine called Handlebars to generate fully parameterized
simulation models from textual templates without programming.

The new technology stack is rooted in the Eclipse application framework and eco-
system.4 Its main advantage is the possibility to implement CRUD applications
like parameter catalogs and their underlying data models with no or very view
lines of handwritten code (low-code-development).

Plans are to use the same approach also for implementation of (3). Since task
(2) and maybe (1) will use Eclipse, too, close integration of parameter catalogs
and simulation environments seems feasible. E.g., a user could drag an electric
system component from a catalog onto an INSEL block for parametrization.

The Eclipse application framework offers:

4A comparable, but completely different approach would be to combine several web applications
and services via portal software in web browsers.

7

Parameter Catalogs for Simulation

• OSGI plug-in mechanism and UI framework for integrating applications and
services

• E4 application model to declaratively describe user interface’s structure

• General notion of project with specific file types, help system, preferences etc.

• IDE support for important general purpose languages like Java, Python5 ,
Ruby, C, Fortran, C++

• Industry proven DSLs and code generators for data models and UIs based on
the Eclipse Modeling Framework6 (EMF):

◦ Ecore7 for model driven generation of Java classes and persistence layers
for XML or data bases

◦ Eclipse Sirius8 for describing and generating graphical and form based UIs

◦ XText9 : Support for creating textual DSLs.

◦ Mechanisms to adapt or extend data models and forms to specific needs
(e.g., we added quantities — that is numbers with units — to Ecore, a
feature very important for parameter catalogs)

5 https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
6 https://www.eclipse.org/modeling/emf
7 https://www.eclipse.org/ecoretools
8 https://www.eclipse.org/sirius/
9 https://www.eclipse.org/Xtext

8

https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/ecoretools
https://www.eclipse.org/sirius/
https://www.eclipse.org/Xtext
https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/ecoretools
https://www.eclipse.org/sirius/
https://www.eclipse.org/Xtext

Parameter Catalogs for Simulation

• Rich open source eco-system with lots of plugins and projects important for
an urban simulation platform:

◦ model server for distributed access and work on Ecore models, including
model comparison and migration (CDO10 , EMFCompare11)

◦ a Python implementation of Ecore12

◦ GIS: storage, processing, and visualization of geographical data (list of
projects under the umbrella LocationTech13 , e.g. user-friendly desktop
internet GIS uDig14)

◦ traffic simulation (SUMO15)

◦ spatial multi-agent-simulation (GAMA-Platform16)

◦ scientific workflows (Triquetrum17)

◦ visualizations (Nebula18)

◦ machine learning (deeplearning4j19)

◦ 45+ projects in the area of IoT20

◦ …

As always, all that glitters is not gold. When we go through the details below, some
bugs and inconsistencies, typical for open source projects of this age and size,
have to be addressed.

10 https://projects.eclipse.org/projects/modeling.emf.cdo
11 https://www.eclipse.org/emf/compare
12 https://pyecore.readthedocs.io/en/latest
13 https://projects.eclipse.org/projects/locationtech
14 http://udig.refractions.net
15 https://www.eclipse.org/sumo
16 https://gama-platform.github.io/wiki/Home
17 https://projects.eclipse.org/projects/science.triquetrum
18 https://www.eclipse.org/nebula/widgets/visualization/visualization.php
19 https://deeplearning4j.org
20 https://iot.eclipse.org

9

https://projects.eclipse.org/projects/modeling.emf.cdo
https://www.eclipse.org/emf/compare
https://pyecore.readthedocs.io/en/latest
https://projects.eclipse.org/projects/locationtech
http://udig.refractions.net
https://www.eclipse.org/sumo
https://gama-platform.github.io/wiki/Home
https://projects.eclipse.org/projects/science.triquetrum
https://www.eclipse.org/nebula/widgets/visualization/visualization.php
https://deeplearning4j.org
https://iot.eclipse.org
https://projects.eclipse.org/projects/modeling.emf.cdo
https://www.eclipse.org/emf/compare
https://pyecore.readthedocs.io/en/latest
https://projects.eclipse.org/projects/locationtech
http://udig.refractions.net
https://www.eclipse.org/sumo
https://gama-platform.github.io/wiki/Home
https://projects.eclipse.org/projects/science.triquetrum
https://www.eclipse.org/nebula/widgets/visualization/visualization.php
https://deeplearning4j.org
https://iot.eclipse.org

Parameter Catalogs for Simulation

2. How to Implement Parameter Catalogs with Eclipse

At the end of this chapter, you should be able to build a running software prototype
for creating and maintaining parameter catalogs based on a graphical data model
of the domain you are an expert in.

To build data models and parameter catalogs from scratch, we first have to
understand some basics about Eclipse, and then install the correct Eclipse
package. Thereafter, we can model our data with Ecore considering some best
practices, followed by the generation of Java classes and user interface (UI).
Finally, we will install some plug-ins to "pimp" our Eclipse installation in order to
add units and quantities to the mix.

2.1. Eclipse Basics

Eclipse21 was originally developed by IBM and became Open Source in 2001.
It is best known for its Integrated Development Environments (Eclipse IDEs), not
only for Java, but also for C++, Python and many other programming languages.
These IDEs are created on top of the Eclipse Rich Client Platform (Eclipse RCP),
an application framework and plug-in system based on Java and OSGi. Eclipse
RCP is foundation of a plethora of general-purpose applications, too.

First time users of Eclipse better understand the following concepts.

Eclipse Packages.
An Eclipse package is an Eclipse distribution dedicated to a specific type of
task.22 A list of packages is available at eclipse.org23 . Beside others it contains
Eclipse IDE for Java Developers, Eclipse IDE for Scientific Computing, and
Eclipse Modeling Tools. Note that third parties offer many other packages,
e.g. GAMA for multi-agent-simulation or Obeo Designer Community for creating
diagram and form editors. This is the package we will use later.

Several Eclipse packages can be installed side by side,
even different releases of the same package. Multiple
Eclipse installations can run at the same time, each on its
own workspace (see below).

21 https://en.wikipedia.org/wiki/Eclipse_(software)
22The notion of an Eclipse package has nothing to do with Java packages.
23 https://www.eclipse.org/downloads/packages/

10

https://en.wikipedia.org/wiki/Eclipse_(software)
https://www.eclipse.org/downloads/packages/
https://en.wikipedia.org/wiki/Eclipse_(software)
https://www.eclipse.org/downloads/packages/

Parameter Catalogs for Simulation

Plug-ins / Features.
An installed Eclipse package consists of a runtime core and a bunch of additional
plug-ins. Technically, a plug-in is just a special kind of Java archive (JAR file)
that uses and can be used by other plug-ins with regard to OSGi specifications.
Groups of plug-ins that belong together are called a feature.

Sometimes, a user will add plug-ins or features to an Eclipse installation to
add new capabilities. E.g. writing this documentation within my Eclipse IDE is
facilitated by the plug-in Asciidoctor Editor24 . Plug-ins can easily be installed
via main menu command Help → Eclipse Marketplace… or Help → Install
New Software… . Some plug-ins may be self-made like our City Units plug-in that
enables Ecore to deal with physical quantities.

Git.
Git25 is the industry standard for collaborative work on, and versioning of, source
code and other textual data. Collaborative development of parameter catalogs
benefits massively from using Git. Git support is built into Eclipse Modeling Tools,
the Eclipse package we will use. However, if Eclipse needs to connect to a Git
server that uses SSH protocol (not HTTPS with credentials), access configuration
is more involved and may be dependent on your operating system.

Some users, anyway, prefer to use Git from the command line or with one of the
client application listed here26 , e.g. TortoiseGit27 for Windows.

While it is required to get Git working at some point, we won’t refer to it in this
document and, for now, do not cover the installation of Git on your machine or
configuration of Git in Eclipse.

Workspaces.
When you start a new Eclipse installation for the first time, you are asked to
designate a new directory in your file system to store an Eclipse workspace.
Eclipse is always running with exact one workspace open. As the name implies,
a workspace stores everything needed in a given context of work, namely a set
of related projects the user is working on as well as meta-data like preference

24 https://marketplace.eclipse.org/content/asciidoctor-editor
25 https://git-scm.com
26 https://git-scm.com/downloads/guis
27 https://tortoisegit.org

11

https://marketplace.eclipse.org/content/asciidoctor-editor
https://git-scm.com
https://git-scm.com/downloads/guis
https://tortoisegit.org
https://marketplace.eclipse.org/content/asciidoctor-editor
https://git-scm.com
https://git-scm.com/downloads/guis
https://tortoisegit.org

Parameter Catalogs for Simulation

settings, the current status of projects, to do lists, and more. In case a user wants
to work in different contexts, e.g. on different tasks, command File → Switch
Workspace allows to create additional workspaces and to switch between them.

Any plug-in from the original Eclipse package or installed
by the user later will be copied into the Eclipse installation
directory, not in any workspace. Configuration and current
state of plug-ins, on the other hand, are stored in
workspaces.

Projects.
An Eclipse project is a technical term for a directory that often contains:

• files of specific types for source code, scripts, XML files or other data

• build settings, configurations

• dependency definitions (remember the dependencies between plug-ins
above?)

• other Eclipse projects.

File → New → Project… offers many different types of projects that the user
can choose from, e.g. Java projects to create Java programs, Ecore modeling
projects, or general projects, that simple hold some arbitrary files.28

Files that do not belong to a project are invisible for Eclipse!

The projects belonging to a workspace can either be directly stored within the
workspace as sub-directories (the default offered to the user when creating a new
project), or linked from it, that is the workspace just holds a link to the project
directory that lives somewhere in the file system outside of the workspace. Linking
allows to work with the same projects in different workspaces.

While it sometimes makes sense to share or exchange workspaces between
users,29, I do not recommend this for now. Projects, in contrast, are shared

28Projects possess one or more natures used to define a project’s principal type.
29Or even work on the same workspace provided in the cloud, see Eclipse Che [https://
www.eclipse.org/che/technology/].

12

https://www.eclipse.org/che/technology/
https://www.eclipse.org/che/technology/
https://www.eclipse.org/che/technology/

Parameter Catalogs for Simulation

between users most of the time, usually via Git. In general, I would suggest to
store Eclipse projects outside workspaces at dedicated locations in the user’s file
system. That way, we can follow the convention that local Git repositories should
all be located under <userhome>/git.

2.2. Setup Obeo Designer

Install Java.
Eclipse runs on 64-bit versions of Windows, Linux, and macOS and requires an
according Java Development Kit (JDK), version 11 or higher, to be installed on
your machine. Even if such JDK is already installed on your machine, please
download the OpenJDK version 16 or newer for your operating system from
Adoptium30 . Installation process is straight forward, but you can also find links to
exhaustive instructions for your operating system.

New Java versions appear every six months, so one could tend to stick with older
version 11 that comes with long time support (LTE) until next LTE version 17
arrives in autumn 2021. However, actual version 16 conforms to the latest security
measures built into macOS Catalina, so it is a must if software we build here shall
be deployed to these systems, too.

Note that different versions of Java coexist peacefully.

Install Obeo Designer, Community Edition.
Our graphical and form based modeling tools, e.g. Insel 9.0 and Parameter
Catalogs, run on top of Eclipse Sirius31 . Technically, the Eclipse Sirius project
provides a set of open source features and plugins that can be added to any
Eclipse package to transform it into a very flexible modeling workbench. Instead
of adding these software components manually, we start with a pre-configured
Eclipse package named Obeo Designer. Please download and install the latest
version (11.5 at the time of writing) available at Download Obeo Designer
Community32 .

30 https://adoptium.net
31 https://www.obeodesigner.com/en/product/sirius
32 https://www.obeodesigner.com/en/download

13

https://adoptium.net
https://www.obeodesigner.com/en/product/sirius
https://www.obeodesigner.com/en/download
https://www.obeodesigner.com/en/download
https://adoptium.net
https://www.obeodesigner.com/en/product/sirius
https://www.obeodesigner.com/en/download

Parameter Catalogs for Simulation

Depending on the operating system, several security
dialogs have to be acknowledged during installation and
first launch of Obeo Designer.

After the 400 something MB package has arrived, unzip the downloaded
file and move the resulting application named ObeoDesigner-Community into
Applications on macOS, Programs on Windows, or similar on Linux.

Special installation note for macOS: As Obeo Designer
currently is not code-signed, macOS consideres it as
damaged. To work around this security feature, remove the
quarantine status of the program like so:

1. Open a terminal in the folder containing the .app file

2. Execute: xattr -d com.apple.quarantine ObeoDesigner-
Community.app

3. Double click the app to start.

After installation has finished launch the application for the first time and you will
see a dialog for choosing a new empty directory as its workspace.

Figure 1. Initial Dialog to Choose a Workspace Directory

More workspaces might come into existence later, so replace the proposed
generic directory path and name with a more specific one, e.g.ObeoDesignerWS.
The main window appears with a Welcome Screen open. Especially under
Documentation you will find exhaustive documentation on Eclipse that might be
of interest later, e.g.:

• Workbench User Guide

◦ Concepts: perspectives, projects, views, editors, features, resources, …

◦ Tasks: Working with perspectives, views and editors, installing new
software. …

• EGit Documentation

14

Parameter Catalogs for Simulation

◦ Git for Eclipse Users

◦ EGit User Guide

• Ecore Tools User Manual: Learn how to use the Ecore diagram editor.

For now, you can dismiss the welcome screen. It can be opened anytime by
executing Help → Welcome.

Now you should see the initial window layout with Model Explorer and Outline on
the left and a big empty editing area to the right with a Properties view below.

Add Plug-ins to deal with Quantities and Units.
Parameter catalogs should be able to represent quantities, not just bare numbers.
See Unit of measurement libraries, their popularity and suitability33 for a
systematic account of open source solutions in the this area.

Java provides an extensive framework to deal with quantities and their
units defined in Java Specification Request (JSR) 38534 . The reference
implementation for this framework is Indriya35 . Demos of its usage can be found
at https://unitsofmeasurement.github.io/uom-demos/.

To make Indriya available for use in Ecore data models, the author has created
two plug-ins that can easily be added to Eclipse. To do so, open dialog Help →
Install New Software… and enter site https://transfer.hft-stuttgart.de/
pages/neqmodplus/indriya-p2/release_target_211/ like depicted below.

Figure 2. Install Plug-in from Specific Update Site

Select Indriya plug-in, press Next > and acknowledge all following dialogs,
including security warnings.

33 https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
34 https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/
edit#heading=h.6698n7erex5o
35 https://unitsofmeasurement.github.io/indriya/

15

https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/edit#heading=h.6698n7erex5o
https://unitsofmeasurement.github.io/indriya/
https://unitsofmeasurement.github.io/uom-demos/
https://transfer.hft-stuttgart.de/pages/neqmodplus/indriya-p2/release_target_211/
https://transfer.hft-stuttgart.de/pages/neqmodplus/indriya-p2/release_target_211/
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2926
https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/edit#heading=h.6698n7erex5o
https://docs.google.com/document/d/12KhosAFriGCczBs6gwtJJDfg_QlANT92_lhxUWO2gCY/edit#heading=h.6698n7erex5o
https://unitsofmeasurement.github.io/indriya/

Parameter Catalogs for Simulation

Do the same for the City Units plug-in available
at site https://transfer.hft-stuttgart.de/pages/neqmodplus/de.hft-

stuttgart.cityunits/release_target_110/ Finally, restart Eclipse to complete
plug-in installation.

While the first plug-in installs Indriya, the second plug-in adds some specific units
for urban simulation and Ecore types used for modeling quantities as attributes
of classes.

Now you should see the initial layout of Eclipse with Model Explorer and Outline
on the left and a big empty editing area to the right with a Properties view below.

2.3. Exercise: Modeling a Parameter Catalog with Ecore

Before we start working on real catalog projects hosted in a Git repository in the
next section, let us first create a demo project for playing around and learning
basic modeling skills.

There are two hard problems in computer science: cache
invalidation, naming things, and off-by-1 errors.

— Phil Karlton / N.N.

It takes time and effort to come along with good names for model entities, projects,
files, and so on. Also, specific naming conventions are in place to enhance
readability of models and program code. Since it is not always clear where names
provided during modeling are used later, I compiled a list of names important in
Ecore projects and added examples and comments to elucidate their meaning
and naming conventions.

Table 1. Naming

Name Demo Catalog
Example

Real World Expample

Namespace URI http://example.org/
democatalog

http://hft-stuttgart.de/
buildingphysics

Namespace Prefix democat buildphys

Base Package (reverse
domain)a

org.example de.hftstuttgart

Main Package democatalog buildingphysics

16

https://transfer.hft-stuttgart.de/pages/neqmodplus/de.hft-stuttgart.cityunits/release_target_110/
https://transfer.hft-stuttgart.de/pages/neqmodplus/de.hft-stuttgart.cityunits/release_target_110/
http://example.org/democatalog
http://example.org/democatalog
http://hft-stuttgart.de/buildingphysics
http://hft-stuttgart.de/buildingphysics

Parameter Catalogs for Simulation

Name Demo Catalog
Example

Real World Expample

Eclipse Projectb org.example.democatalog.modelde.hftstuttgart.buildingphysics

Class Prefix Democatalog Buildingphysics

XML File Suffix democatalog buildingphysics

Classes e.g. SolarPanel e.g. WindowType

Attributes e.g. nominalPower e.g. id

Associations e.g. solarPanels e.g. windowTypes
ahttps://en.wikipedia.org/wiki/Reverse_domain_name_notation
bhttps://wiki.eclipse.org/Naming_Conventions#Eclipse_Workspace_Projects

Classes are written in Camel case notation36 starting with an upper case letter.
Associations and attributes are written the same way, but starting with a lower
case letter.

All other names should be derived from the globally unique name space of the
project, in our example: example.org/democatalog. It consists of a global unique
domain name and a path to the project, unique within that domain.

Use the names of example Demo Catalog to create your first Ecore modeling
project:

1. Execute File → New → Ecore Modeling Project from main menu — not
Modeling Project!

2. Name the project org.example.democatalog.model and uncheck Use default
location so that the new project is not stored in workspace but a different
directory you create/choose, then click Next >

3. Provide democatalog as main Java package name, uncheck Use default
namespace parameter and provide http://example.org/democatalog as Ns
URI and democat as Ns prefix

4. Click Finish.

Eclipse should look like below with an new empty graphical Ecore diagram editor
opened. The diagram is automatically named democatalog after the package

36 https://en.wikipedia.org/wiki/Camel_case

17

https://en.wikipedia.org/wiki/Reverse_domain_name_notation
https://wiki.eclipse.org/Naming_Conventions#Eclipse_Workspace_Projects
https://en.wikipedia.org/wiki/Camel_case
http://example.org/democatalog
https://en.wikipedia.org/wiki/Camel_case

Parameter Catalogs for Simulation

name for the Java classes that will be generated from it (provided above). The
Model Explorer shows the contents of the new Ecore modeling project.

Figure 3. New Ecore Modeling Project

To get your feet wet, do this:

1. Drag a Class from the palette on the right onto the editor’s canvas: it will
materialize as a rectangle labeled NewEClass1.

2. The class symbol should be selected initially, so you can see its attributes in
the Properties view.

3. In there replace NewEClass1 by EnergyComponentsCatalog to rename the
class.

4. Click anywhere on the canvas and notice that the class symbol is deselected
and the toolbar at the top adapts accordingly.

5. In the toolbar change 100% to 75% to scale diagram.

6. Execute File → Save to save model and diagram on disk.

7. Close diagram editor democatalog by closing its tab.

8. Reopen saved diagram by double click on entry democatalog in Model
Explorer.

Technically, everything is in place now to begin modeling the data that the
projected catalog shall contain. Except … understanding the basics of object-

18

Parameter Catalogs for Simulation

oriented modeling would be helpful. This is why developers should support
domain experts at this stage.

Model Data with Class Diagrams.
Ecore diagrams are simplified UML class diagrams. Here some resources on what
this is all about:

• Toronto Lecture on Object Oriented Modeling37

• UML 2 Class Diagrams: An Agile Introduction38

• UML @ Classroom: Eine Einführung in die objektorientierte Modellierung
(German Book)39

Beginners are strongly encouraged to read the first two
resources. The first one contains a gentle introduction,
especially suited for domain experts. The second one can
also serve as reference.

We will touch central object-oriented concepts Class, Object, Attribute,
Association, Composition, and Multiplicity in an example below, but work through
above sources to get a deeper understanding and to enhance your modeling
skills.

Note that above sources differentiate between conceptual and detailed models.
We go for detailed models, since only these contain enough information to
generate code. Having said this, it is usually a good idea to have two or three
conceptual iterations at a white board to agree on the broad approach before
going too much into detail. But even if one starts with Ecore models right away,
these also can be adapted any time to follow a new train of thought.

See here the essential and typical structure of a parameter catalog in a class
diagram. Instead of artificial example classes like Foo and Bar it shows classes
from an existing catalog, albeit in very condensed form.

37 http://www.cs.toronto.edu/~sme/CSC340F/slides/11-objects.pdf
38 http://agilemodeling.com/artifacts/classDiagram.htm
39 https://www.amazon.de/UML-Classroom-Einführung-
objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?
__mk_de_DE=ÅMÅŽÕÑ&dchild=1&keywords=UML&qid=1585854599&sr=8-2

19

http://www.cs.toronto.edu/~sme/CSC340F/slides/11-objects.pdf
http://agilemodeling.com/artifacts/classDiagram.htm
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
http://www.cs.toronto.edu/~sme/CSC340F/slides/11-objects.pdf
http://agilemodeling.com/artifacts/classDiagram.htm
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2
https://www.amazon.de/UML-Classroom-Einf%C3%BChrung-objektorientierte-Modellierung-ebook/dp/B00AIBE1QA/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=UML&qid=1585854599&sr=8-2

Parameter Catalogs for Simulation

Figure 4. Principle Structure of a Parameter Catalog

The diagram models four types of technical components whose data shall be
stored in the catalog, e.g. for parameterization of simulation models later: Boiler,
CombinedHeatPower, SolarPanel, and Inverter.

The catalog itself is represented by class EnergyComponentsCatalog. Unlike
dozens, hundreds, or even thousands of objects to be cataloged — Boilers,
Inverters etc. — there will be just exactly one catalog object in the data
representing the catalog itself. Its "singularity" is not visible in the class diagram,
but an Ecore convention requires that all objects must form a composition
hierarchy with only one root object.

Composition.
If, in the domain, one object is composed of others, this is expressed by a
special kind of association called composition. Compositions are depicted as a
link with a diamond shape attached to the containing object. In the Boiler case said
link translates to: The EnergyComponentsCatalog contains — or is composed
of — zero or more (0..*) boiler objects stored in a list named boilers.

Note that class names — despite the fact that they model
a set of similar objects — are always written in singular!
Names for list-like associations and attributes usually are
written in plural form.

Inheritance.

20

Parameter Catalogs for Simulation

Besides composition of objects, the model above shows another, completely
different, kind of hierarchy: the inheritance hierarchy between classes. Whenever
classes of objects share the same attributes or associations, we don’t like to
repeat ourselves by adding that attribute or relation to all classes again and again.
Instead, we add a super class to define common attributes and associations and
connect it to sub classes that will automatically inherit all the features of their
super class.

In our example above, common to all four energy components are attributes
modelName and revisionYear, thus these are modeled by class EnergyComponent
that is directly or indirectly a super class of Boiler, CombinedHeatPower,
SolarPanel, and Inverter. Similar, Boiler and CombinedHeatPower share attribute
installedThermalPower factored out by class ChemicalDevice. SolarPanel and
Inverter share attribute nominalPower modeled in abstract class ElectricalDevice.

Associations.
You probably noticed a fifth type of objects contained in the catalog, namely
Manufacturer objects stored in list manufactureres. How come? Ok, here is the
story:

21

Parameter Catalogs for Simulation

Domain Expert Meets Developer

Exp: “I’d like to store a component’s manufacturer. Shall I add a String
attribute manufacturerName to all classes like Boiler, Inverter and so on to
store the manufacturer’s name?”
Dev shudders: “Well, what do you mean by "… and so on"?”
Exp: “Basically, I mean all energy components.”
Dev: “Fine. We already have a class representing all those energy
components, brilliantly named EnergyComponent. Thus, we can define
manfacturerName there, following one of Developer’s holy principles:
"DRY — Don’t repeat yourself!" By the way: Is the name all you want to
know about manufacturers?”
Exp: “Mhm, maybe we need to know if they are still in business …”
Dev: “… or even since when they were out of business, if at all …”
Exp: “… and the country or region they are active.”
Dev: “Ok, so it’s not just the name — we need a class Manufacturer to
model all these information.”
Exp sighs.
Dev: “Come on, its not that hard to add a class to our data model, isn’t it?”
Exp: “Ok, but how can we express what components a manufacturer
produces?”
Dev: “Wasn’t it the other way around? I thought, you just wanted to know
the manufacturer of a component?”
Exp: “What is the difference?”
Dev: “In data modeling, it is the difference between a uni-directional and
a bi-directional association.”
Exp: “…?”
Dev: “Let’s put it that way: The difference between a link with an arrow on
one side or on both sides.”
Exp: “Ok. We don’t need a list of components per manufacturer, but simply
a reference from the component to its manufacturer.”
Dev: “Fine, then in Ecore please create a simple reference from class
EnergyComponent to class Manufacturer, maybe named producedBy.”
Exp: “I will try this and get back to you.”
Dev: “Fine … good meeting.”

22

Parameter Catalogs for Simulation

Observe in our data model, reference producedBy points from EnergyComponent
to Manufacturer making it uni-directional reference. One can simply query the
manufacturer of a product, but not the other way around. With a bi-directional
reference both queries would be available.

Observe also the annotations 0..* and 1..1 near class Manufacturer. These are
multiplicities of associations: An EnergyComponentsCatalog contains zero, one,
or many objects of class Manufacturer and an EnergyComponent must reference
exactly one manufacturer — not less, not more.

Figure 5. Ecore Relations

To recapitulate: Our example parameter catalog already exhibits all four types
of relations provided by Ecore. You find these in the Ecore editor’s palette
shown here. To create a relation between a sub class and a super class use
tool SuperType. Use the other tools to create an association between classes,
may it be a simple (uni-directional) reference, a bi-directional reference, or a
composition.

Attributes and Enumerations.
Obviously, attributes are central in data modeling. Create one by dragging it from
the palette onto our one and only class so far: EnergyComponentsCatalog. The
class symbol will turn red to indicate an error. Hover with the mouse pointer over
the new attribute and a tooltip with a more or less helpful error message will
appear. Current error is caused by that no data type was set for the new attribute.
Data types for attributes can be integer or floating point numbers, strings, dates,
booleans, and more. To get rid of the error:

1. If not already selected, select new attribute by clicking at it in the editor.

2. In view Properties find EType and click button … to see a quite long list of
available data types.

3. Choose EString [java.lang:String] from the list and the error is gone.

23

Parameter Catalogs for Simulation

Figure 6. Class with Attribute

Change the attribute’s name to author and the class should look like shown here.

Most data types to choose from begin with letter E like in Ecore. These are just
Ecore enabled variants of the respective Java types, thus, choose EInt for an int,
EFloat for a 32 bit floating point number, EDouble for a 64 bit one, and so on.

Ecore allows to introduce new data types. We employ this feature later to enable
data models with physical units and quantities.

There exists one other means to define the values an attribute can take,
namely enumerations of distinct literals. Take Monday, Tuesday, Wednesday, …
 as a typical example for representing weekdays. In our example data model
you’ll find one Enumeration named BoilerType with values LowTemperature and
Condensing.

Homework.
The next section deals with generation of Java code from data models. To have
more to play with, please implement our example model in Ecore now.

Figure 7. Abstract Class

To do this, there is one more thing to know about classes: the difference
between ordinary classes and abstract classes. 'Ordinary class' doesn’t sound
nice, therefore, classes that are not abstract are called concrete classes. Our
example diagram depicts abstract classes with letter A while concrete classes are
labeled with C. You add abstract classes to a model with a special palette tool
shown here.

The thing is: Objects can be created for concrete classes only!

In our example, it makes no sense to create an object from class
EnergyComponent, because there is not such a thing like an energy component

24

Parameter Catalogs for Simulation

per se. Therefore, this class is abstract. It is true that an inverter is an energy
component, thus inheriting all its features, but it was created as Inverter, not as
EnergyComponent.

Super classes will be abstract most of the time. So my advice is: Model a super
class as abstract class unless you convince yourself that there exist real objects
in the domain that belong to the super class but, at the same time, do not belong
to any of its sub classes. In the Ecore editor properties view, you can specify if a
class is abstract or not, simply by toggling check box Abstract.

Two more tips and you are ready to rock and roll! — At least with your homework.

An exhaustive user manual for Ecore diagram editor is
available at Help → Welcome → Documentation →

EcoreTools User Manual.

If Ecore models get bigger, you may find it more convenient
to work with a form based UI instead of, or in addition to, the
diagram editor. Open this kind of editor via command Open
With → Ecore Editor from the context menu over entry
democatalog.ecore in the Model Explorer view. Note that
Eclipse synchronizes different editors of the same content
automatically.

That’s it for the data modeling part. By now, your Ecore model should look like this:

Figure 8. Example Model (Homework)

25

Parameter Catalogs for Simulation

2.4. Making an Application to Create and Edit Data

In this section you will get a glimpse on how to create an application to create and
edit data conforming to the Ecore data model of our demo parameters catalog.

Topics described here (and much more) are discussed in this Sirius Starter
Tutorial40 .

If you are less interested in the details of UI creation, but more in working on
already existing parameter catalog software and data, you may skip this section
for now and proceed with ???.

Generation of Java Code from Data Model.
Let us bring the Ecore data model to life, that is, generate code from it that allows
to create, read, update, and delete (CRUD) concrete data objects of modeled
classes in computers:

1. Make sure all files are saved (File → Save All)

2. Execute Generate → All from the context menu of Ecore editor democatalog

Figure 9. Generated Classes

Generate → All creates classes that represent the modeled data in
code at first. These classes are located in three packages under directory
src-gen in org.example.democatalog.model. Then, the command generates
Edit Code and Editor Code within two new Eclipse projects named
org.example.democatalog.edit and org.example.democatalog.editor, again
with generated classes in src-gen.

40 https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial/

26

https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial/
https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial/
https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial/

Parameter Catalogs for Simulation

You may have a look at some Java classes for curiosity by double clicking at them
in Model Explorer. There is no point in trying to understand the code in detail,
but observe token @generated present in the comments of all classes, fields and
methods. Classes, fields and methods marked with this token are (re)generated
whenever above commands are executed.

Sometimes it is required to manually adapt generated code — after all our concern
is "low code", not "no code" development. In that case, we will replace @generated
by @generated NOT to prevent code regeneration of the respective item.

After code generation, you may have noticed some warnings showed up in view
Problems.

Figure 10. Warnings

In general, it is highly recommended to resolve warnings, and errors of course,
but we will make an exception from the rule, since the warnings are uncritical and
would reappear each time code is regenerated.

Create a Prototype Application for Data Editing and UI Design.
Firstly, launch a new instance of the running Obeo Designer application:

1. Execute Run → Run Configurations… from the main menu and double click
on Eclipse Application to get a New_configuration. You may want to rename
New_configuration to DemoCatalog or the like.

2. Press Run to start the new Eclipse application that is basically a copy of your
running Obeo Designer application but with a different workspace.

3. In the new application window close the welcome screen and open the Sirius
perspective using the suited button in the top right corner of the main window.
This perspective provides specific Sirius menus and new project types.

Secondly, create a project that will contain catalog data (remember Eclipse can
only handle files that are part of a project):

1. From main menu execute File → New → Modeling Project — not Ecore
Modeling Project!

27

Parameter Catalogs for Simulation

2. Name the project org.example.democatalog.data and uncheck Use default
location so that the new project — again — is not stored in workspace but
a different directory you create/choose, usually a directory named like the
project and sitting side by side to the model, edit and editor project directories
created above.

3. Click Finish.

Thirdly, create a first XML file for catalog data:

1. From main menu execute File → New → Other… and type demo into search
field Wizards:

2. Select Example EMF Model Creation Wizards → DemoCatalog Model and
click Next >

3. Select org.example.democatalog.data as parent directory and name the data
file First.democatalog

4. Click Next > and choose Energy Component Catalog as the root data object
that will be created initially

5. Click Finish.

A new entry named First.democatalog should appear in the Model Explorer.
Double-click it and a generic editor will open. In principle, one could use this
editor to add new data to the catalog via New Child > in the context menu over
entry Energy Component Catalog. Data of a selected entry can be edited in view
Properties that is generic, too.

Please add two or three boilers this way to have some data to play with below.

When done, you may save First.democatalog so that after closing the application
data will reappear if it is opened again as described above.

The generic editors don’t get as far. Usually, one would like to have tables, custom
property sheets, input validation, and more. Well, Sirius is all about creating nice
graphical and form-based editors for data models specified in Ecore. To do this
we need one more Eclipse project.

UI Design Project.
Like the data of our catalog is modeled as an Ecore file using a dedicated
graphical editor, so will the user interface (tables, trees, diagrams, property

28

Parameter Catalogs for Simulation

views) be modeled in a Sirius .odesign file that lives in a special Eclipse project
that we create while still in the (second) Eclipse application that hosts the data:

1. Execute File → New → ViewPoint Specification Project

2. Name the project org.example.democatalog.design, uncheck Use default
location as always and create/choose a directory with the same name as the
project besides to the model, edit, editor, and data project directories

3. Click Finish.

A special editor for file democatalog.odesign appears automatically. In it select
MyViewpoint and rename it in Properties to Catalog. A viewpoint provides a set
of representations (tables, trees, diagrams, property views) that end-users can
instantiate.

Adding a Table to the UI.
In what follows, we work with the democatalog.odesign editor. Say, we want to
add a table for boilers to the UI:

1. From context menu over viewpoint Catalogs execute New Representation →
Edition Table Description to create a new description that is automatically
selected and shown in view Properties

2. To connect the table with its data model, choose tab Metamodels in Properties,
click on Add from registry and select http://example.org/democatalog.

3. Go back to tab General and enter Boiler_table as Id.

4. In the green input field Domain Class press key ctrl-space and choose
democatalog::EnergyComponentCatalog from the list.

From the above Boiler_tables know that they present data conforming to our
http://example.org/democatalog data model and that boiler data are found as
part — or "below" — the Energy Component Catalog.

Next, specify the lines to be displayed in the table:

1. From context menu over Boiler_table create New Table Element → Line

2. In tab General in Properties, enter Boiler_line as Id:

3. In the green input field Domain Class press key ctrl-space and choose
democatalog::Boiler from the list.

29

http://example.org/democatalog
http://example.org/democatalog

Parameter Catalogs for Simulation

And now for the columns:

1. From context menu over Boiler_table create New Table Element → Feature
Column

2. In tab General in Properties, enter Name_col as Id:

3. In the green input field Feature Name press key ctrl-space and choose
modelName from the list

4. Repeat the above steps for boilerType and installedThermalPower

accordingly.

After addition of some foreground and background styles, the design of the UI
looks like this.

Figure 11. Boiler Tables Design

Save it!

To create an instance of the table just designed double-click on
representations.aird in the data project:

30

Parameter Catalogs for Simulation

Figure 12. Administration of Model and Representations

In case viewpoint Catalogs under header Representations is still disabled as
shown above, select it and press Enable. Then:

1. Press New… to open a Create Representation Wizard

2. Choose Boiler_table and click Next >

3. Select Energy Components Catalog as data source and click Finish

4. You are prompted for the new tables name: simply confirm the proposed name
with OK.

Figure 13. Boiler Table with Properties View

The screenshot on the right shows new Boiler_table with just two entries. Details
of the selected entry are editable in Properties.

Is your table empty? In this case you probably did not add example data using
the default editor as described above. But you can add new Boilers any time via
command New child → Boiler in the context menu of Energy Component Catalog
in section Models of the representations editor depicted above.

Note, that you can delete boilers from the table’s context menu, but currently there
is no button or menu entry to create new boilers. Such a command would have
to be described in democatalog.odesign first.

Be aware that applications with UI design and example data launched from Obeo
Designer are meant to be prototypes for the final software only. In fact, any saved

31

Parameter Catalogs for Simulation

changes in the design file are instantly reflected in the UI. During refinement
of model and UI, data sets can be created, edited, and tested for usability
without the need to built deployable software component. (On deployment, see
parts Accessing and Using Parameter Catalogs and Build (Parameter Catalog)
Applications with Eclipse Tycho below.)

Iteratively the UI design must be adapted to changes in data model, although
some changes are automatically reflected in the generated UI, at least for default
forms. Data model changes can also can render existing XML data incompatible.
There are tools for data migration, but for now, recreation of test data or manual
editing of XML file is the way to go.

As you may imagine, this is just the tip of the iceberg of what can be done with
the Sirius framework for designing graphical UIs. While domain experts should be
capable to create and to refine Ecore data models, the UI design of a parameter
catalogs will mainly be done by software developers. However, since the UI is
not implemented by program code, but a description in an .odesign file, domain
experts can easily enhance and tweak it, e.g. by adding or reordering columns
of a table.

2.5. Working with Git Hosted Parameter Catalogs

Ecore data models and Sirius based UI design are used to create parameter
catalog software hosted in Git repositories. To work with these, all you need is
Jave 16 and the Obeo Designer with plug-ins for handling of Units installed (see
Section 2.2, “Setup Obeo Designer” for details.)

Import Modeling Projects from Git.
To connect to a Git repository open the Import Projects from Git wizard via File
→ Import… → Git → Projects from Git → Clone URI. Then:

1. Copy the URI of the git repository into the according input field, e.g.: https://
rs-loy-gitlab.concordia.ca/parameter-catalogs-ecore/greenery-catalog.git and
provide your credentials in fields User and Password. Tick check box Store
in Secure Store and provide a master password if required! If you don’t,
be prepared to be prompted for your credentials over and over again

2. Click Next > and select a repository branch to check out, usually master

32

https://rs-loy-gitlab.concordia.ca/parameter-catalogs-ecore/greenery-catalog.git
https://rs-loy-gitlab.concordia.ca/parameter-catalogs-ecore/greenery-catalog.git

Parameter Catalogs for Simulation

3. Click Next > and choose the directory on your file system where to store the
repository, e.g. <user home>/git/greenery-catalog. Here, we adhere to the
convention is to have all git repositories stored in <user home>/git/

4. After data transfer has completed, the wizard offers to Import existing Eclipse
projects. Click Next > and select the project with suffix .model, .edit and
.editor for import, e.g. ca.concordia.usp.greenerycatalog.model etc.

5. Click Finish.

Now you can work on the data model like you did with the demo catalog.
Find it under model in ca.concordia.usp.greenerycatalog.model (compare fig.
Figure 3, “New Ecore Modeling Project”).

Catalog Data and UI Design.
For data inspection and editing — and possibly modifying the UI — launch a
new instance of the running Obeo Designer application by executing Run
→ Run Configurations… , double-click on Eclipse Application to get a
New_configuration and give it a meaningful name (e.g. GreeneryCatalog). Then,
press Run to start the application, close the welcome screen and open the Sirius
perspective using the suited button in the top right corner of the main window.

Simply reuse the Run Configuration specified above, when
starting the application next time!

Now, import the projects that contain data and UI design, respectively:

1. Execute File → Import… for the import wizard

2. Browse to the directory containing the projects (e.g. <user home>/

git/greenery-catalog) and check just the projects with suffixes .data
and .design for import, e.g. ca.concordia.usp.greenerycatalog.data ,
ca.concordia.usp.greenerycatalog.design

3. Click Finish.

When closing the application, it asks to store or dismiss any changes in data or
UI design. You can also save these any time with File → Save All.

Declare Quantities.

33

Parameter Catalogs for Simulation

For simplicity, the demo catalog only used built-in attribute types like EDouble,
EInt, or EString. On the other hand, real-world parameter catalogs use a custom
type named Quantity that combines a numerical (double) value with a unit.

Symbols for defining units follow SI and other standards, including decimal
prefixes like m for Milli or G for Giga as well as derived units, that is: mV, GV or
kW·h/m³ are all valid unit definitions. This is all documented well in the resources
mentioned in section Add Plug-ins to deal with Quantities and Units above, but
for convenience, a table with valid units, including some specific units for urban
simulation, is compiled in UnitsExamples.md.

To set an attribute’s type to Quantity just select it in the model, choose tab
Semantic in view Properties, click on EType and select Quantity from the list of
available types. In the figure below, this was already done.

Figure 14. Quantity Default Values

The red arrow shows how a unit is defined in field Default Value Literal. E.g.,
attribute densityOfDrySoil has unit kg/m³ assigned to it.

Note that, for this attribute, no numerical default value is given. In contrast,
conductivityOfDrySoil is given a unit and a default numerical value: 1.0 W/
(m*K).

The unit of a Quantity is definied by the sub-string that
follows the first space character in the string given in
Default Value Literal. The sub-string before that space is
interpreted as default numerical value of the Quantity.

The rules for how a Quantity default value is converted to its unit and default
(initial) numerical value are very "forgiving":

• If no unit is given or it cannot be parsed to a valid unit, it will be
regarded as dimensionless. E.g., index values, fractions and percentages are
dimensionless quantities by purpose. While units may be displayed in the UI

34

UnitsExamples.md

Parameter Catalogs for Simulation

like [kg], a dimensionless quantity will show up as [], that is as the empty
string.

• If no numerical default value is present, then the numerical value is regarded
as undefined.

• You may choose to specify a quantity as dimensionless and without numeric
default by leaving field Default Value Literal empty (or provide some non-
sensical string).

By this rules, any string — including the empty string — will be interpreted as a
Quantity somehow.

Declare Ranges.
What is the point in declaring a dimensionless quantity for an attribute, anyway,
instead of just declare it EDouble or EInt? The answer is that quantities can — and
most of the time will — have a range of valid values defined.

Figure 15. Quantity Range Definition

As you can see in the screenshot, the allowed range of attribute values is defined
by a so called Ecore annotation named UomQuantities. It provides the minimal
and/or maximal value for the attribute, inclusively. If a minimal or maximal value
is omitted or invalid, the range is not limited on that side.

Adding annotations to an attribute does not work in the graphical Ecore editor, but
only with the standard editor that is opened by Open With → Sample Ecore Model
Editor from the context menu over the Ecore model file in Model Explorer.

In this editor, define a range like this:

1. From the context menu of the attribute of interest execute New Child →

EAnnotation and type http://www.hft-stuttgart.de/UomQuantities into
field Source as depicted above

2. From the context menu of the new UomQuantities annotation execute New
Child → Details Entry and provide values for keys min and max, respectively.

35

http://www.hft-stuttgart.de/UomQuantities

Parameter Catalogs for Simulation

The above typing is a one time effort only, since for defining
further ranges, one simply copies an existing UomQuantity
annotation from one attribute to another one and just edits
the values for min and max.

If a catalog’s end user tries to enter a number outside the given range in the UI,
it will be adapted automatically to a valid value.

Declare Tooltips for Help.
Again, domain experts use a specific annotation to provide short help texts that
inform end-users about an attribute’s purpose, range and so on. (These texts are
displayed as tooltips when the users mouse stays on top of a question mark.) And
again, this is possible only in another kind of editor — this time the editor that is
opened on a .genmodel in Model Explorer. Each Ecore model is accompanied
by a .genmodel that lives besides the respective .ecore file. Open the required
editor from its context menu with Open With → EMF Generator.

The picture below shows the details. Just open the .genmodel tree until you can
select the attribute that shall be documented.

Figure 16. Quantity Documentation

In its Properties provide the tooltip in field Edit → Property Description. In this
example, the same text was also copied to Model → Documentation. These texts
are automatically inserted into comments in the generated program code, so that
they can inform a programmer that wants to use the generated API.

2.6. Summary

Congratulations on making it this far. What have we achieved?

36

Parameter Catalogs for Simulation

We get to know the Obeo Designer IDE and created a graphical Ecore data model
with one catalog class and five classes/types of domain objects therein. Classes
have been defined by name, attributes, and relationships between them, often
with cardinalities. Whenever classes shared some attributes or relationships we
factored these out into super classes. An enumeration introduced a new attribute
type as a set of named values.

From this data model, we issued commands to create Java code for representing
the data in memory as well as to store and retrieve them on and from disk.
Methods to create, read, update and delete data objects (CRUD) were generated,
too. We implemented a prototypical user interface for this data with Eclipse Sirius
by providing a .odesign model for that very UI.

Lastly, we started working on real world parameter catalogs hosted in git
repositories and introduced Quantity as a custom attribute type to model quantities
as numerical values with defined units.

37

Parameter Catalogs for Simulation

3. TBD: Accessing and Using Parameter Catalogs

3.1. Accessing XML-Catalogs from Java

3.2. Create Insel Models with Handlebars Templates

3.3. Accessing XML-Catalogs from Python

38

Parameter Catalogs for Simulation

4. TBD: Distribution of Parameter Catalogs

Three plugins so for for the content and UI.

Missing: Deployable application and inclusion to third party libraries.

Building an application "around" the three plugins for Ecore data model and UI
specification model.

4.1. Create an Eclipse Application

4.2. Use Maven and Tycho as Build System

Install Maven Support.
We are going to create a complete Eclipse desktop application from generated
code. We also want to deploy this application for Linux, macOS and Windows
operating systems. Eclipse offers several approaches for compiling and deploying
such an application, traditionally with Ant scripts.

Creation and maintenance of these scripts turned out to be tedious
and error prone. For quite some years now, the proposed — and mostly
supported — method for building Eclipse applications is to use Maven build
system, more specifically, a couple of Maven plug-ins, subsumed under the name
Tycho.

Many Eclipse platforms have Maven support M2Eclipse41 already built in, not so
our Eclipse Modeling Tools. But don’t worry: Installation of required Eclipse feature
is easy and straight forward. And, by the way, you will acquire the indispensable
skill of how to install new plug-ins/features to Eclipse.

First, tell your Eclipse installation where to look for the new software. Execute
Help → Install new Software… to invoke dialog Available Software and press
Add… . Sub-dialog Add Repository pops up.

41 https://www.eclipse.org/m2e/

39

https://www.eclipse.org/m2e/
https://www.eclipse.org/m2e/

Parameter Catalogs for Simulation

Figure 17. Add update site m2e

In there provide m2e as name and

http://download.eclipse.org/technology/m2e/releases

as location. After confirmation with Add, choose the new site to Work with: Eclipse
now looks up the site for available software.

Figure 18. Choose features to install

Provided Group items by category is checked, above features are displayed.
Check all features and confirm all following questions about licenses and security
concerns. After download is complete — it can take a few minutes — restart
Eclipse. Verify that Maven version 3.6.3 or above is now installed in Window
→ Preferences… (or Eclipse → Preferences… on macOS) under Maven →

Installations.

Figure 19. Check Maven installation

Add third party Java libraries.
"Correct" way to add third party Java libraries as plugins

40

Parameter Catalogs for Simulation

Example Indriya

4.3. Deploy to P2 Repository

4.4. Versioning and Collaboration

41

42

	Parameter Catalogs for Simulation
	1. Introduction
	1.1. The Bigger Picture
	1.2. Lessons Learned
	1.3. Low-Code-Development of Parameter Catalogs

	2. How to Implement Parameter Catalogs with Eclipse
	2.1. Eclipse Basics
	2.2. Setup Obeo Designer
	2.3. Exercise: Modeling a Parameter Catalog with Ecore
	2.4. Making an Application to Create and Edit Data
	2.5. Working with Git Hosted Parameter Catalogs
	2.6. Summary

	3. TBD: Accessing and Using Parameter Catalogs
	3.1. Accessing XML-Catalogs from Java
	3.2. Create Insel Models with Handlebars Templates
	3.3. Accessing XML-Catalogs from Python

	4. TBD: Distribution of Parameter Catalogs
	4.1. Create an Eclipse Application
	4.2. Use Maven and Tycho as Build System
	4.3. Deploy to P2 Repository
	4.4. Versioning and Collaboration

