manyBody.js 3.11 KB
Newer Older
Muddsair Sharif's avatar
Muddsair Sharif committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import constant from "./constant";
import jiggle from "./jiggle";
import {quadtree} from "d3-quadtree";
import {x, y} from "./simulation";

export default function() {
  var nodes,
      node,
      alpha,
      strength = constant(-30),
      strengths,
      distanceMin2 = 1,
      distanceMax2 = Infinity,
      theta2 = 0.81;

  function force(_) {
    var i, n = nodes.length, tree = quadtree(nodes, x, y).visitAfter(accumulate);
    for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply);
  }

  function initialize() {
    if (!nodes) return;
    var i, n = nodes.length, node;
    strengths = new Array(n);
    for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes);
  }

  function accumulate(quad) {
    var strength = 0, q, c, x, y, i;

    // For internal nodes, accumulate forces from child quadrants.
    if (quad.length) {
      for (x = y = i = 0; i < 4; ++i) {
        if ((q = quad[i]) && (c = q.value)) {
          strength += c, x += c * q.x, y += c * q.y;
        }
      }
      quad.x = x / strength;
      quad.y = y / strength;
    }

    // For leaf nodes, accumulate forces from coincident quadrants.
    else {
      q = quad;
      q.x = q.data.x;
      q.y = q.data.y;
      do strength += strengths[q.data.index];
      while (q = q.next);
    }

    quad.value = strength;
  }

  function apply(quad, x1, _, x2) {
    if (!quad.value) return true;

    var x = quad.x - node.x,
        y = quad.y - node.y,
        w = x2 - x1,
        l = x * x + y * y;

    // Apply the Barnes-Hut approximation if possible.
    // Limit forces for very close nodes; randomize direction if coincident.
    if (w * w / theta2 < l) {
      if (l < distanceMax2) {
        if (x === 0) x = jiggle(), l += x * x;
        if (y === 0) y = jiggle(), l += y * y;
        if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l);
        node.vx += x * quad.value * alpha / l;
        node.vy += y * quad.value * alpha / l;
      }
      return true;
    }

    // Otherwise, process points directly.
    else if (quad.length || l >= distanceMax2) return;

    // Limit forces for very close nodes; randomize direction if coincident.
    if (quad.data !== node || quad.next) {
      if (x === 0) x = jiggle(), l += x * x;
      if (y === 0) y = jiggle(), l += y * y;
      if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l);
    }

    do if (quad.data !== node) {
      w = strengths[quad.data.index] * alpha / l;
      node.vx += x * w;
      node.vy += y * w;
    } while (quad = quad.next);
  }

  force.initialize = function(_) {
    nodes = _;
    initialize();
  };

  force.strength = function(_) {
    return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength;
  };

  force.distanceMin = function(_) {
    return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2);
  };

  force.distanceMax = function(_) {
    return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2);
  };

  force.theta = function(_) {
    return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2);
  };

  return force;
}