
Web-based Visualization of the 3D City
Models

Part 1: Cesium Digital Globe and 3D Tiles
This article is intended to give a brief introduction to the web-based 3D visualization of 3D city
models. For this purpose, the creation of a 3D visualization of Wermelskirchen with the digital globe
Cesium is created using an example. Why Wermelskirchen and not New York? The 3D building model of
Wermelskirchen is also freely available, and it is somewhat more manageable than New York. According
to the motto “Think big, start small”, a workflow is presented step by step that shows how to create a
visualization in Cesium based on a 3D building model in CityGML. For this purpose, the CityGML
database is converted into the 3D Tiles data format, which has been optimized for web-based 3D
visualization, and displayed in Cesium. The first step is to show how the visualization is done in
Cesium. It is assumed that the Wermelskirchen 3D building model is already available as 3D tiles. Then
you can see something. In the second step, the conversion from CityGML to 3D Tiles is explained.

Visualization of the 3D building model in Wermelskirchen. Data source: GeoBasis NRW, 3D building model LoD2

The Digital Globe Cesium
The Cesium digital globe can be downloaded from https://cesiumjs.org/downloads/ . It should be run on
its own web server. Basically there are no restrictions as to which web server is used. In the Cesium
installation guide (https://cesiumjs.org/tutorials/cesium-up-and-running/) Node.js is used. In the example
shown here, Apache HTTP Server is used as the web server. No matter which web server is used, after
successful installation the digital globe with the usual "Hello World" should be visible.

https://www.coors-online.de/wp-content/uploads/2018/05/Wermelskirchen.png

Cesium Hello World

3D Tiles
3D Tiles is a hierarchically structured scene graph in which a large 3D model is divided into tiles in order
to realize a quick display in the web browser. The aim is to transfer a first simplified model to the web
browser and display it as quickly as possible. The scene is shown in more detail with user interactions
such as zooming in by reloading further tiles. A quadtree data structure is ideal for creating the tiles in 3D
building models. An area is regularly divided into 4 quadrants, which are named according to the cardinal
directions NE, SE, SW and NW.

https://www.coors-online.de/wp-content/uploads/2018/05/Hello-World-Cesium.png

Each square is further subdivided according to the same pattern. This creates a hierarchical tile structure
that can also be found in the files of the 3D scene.

https://www.coors-online.de/wp-content/uploads/2018/05/3DTiles-3.png

Recursive subdivision of the NE tile. (CC BY 3.0 DE)

A correspondingly generated data set from Wermelskirchen is made available in
the Wermelskirchen3DTiles archive . How this data set was created from the CityGML model is
explained in the second part of this example. First of all, it is a matter of understanding the structure and
visualizing it in the Cesium viewer.

After downloading and unpacking the archive, the following file structure was created:

https://creativecommons.org/licenses/by/3.0/de/
https://www.coors-online.de/wp-content/uploads/2018/05/Wermelskirchen3DTiles.zip
https://www.coors-online.de/wp-content/uploads/2018/05/3DTiles-4.png

The folder structure corresponds to the quadtree structure

There Wermelskirchen3DTilesis a file in the folder tileset.json. The entire scene graph is
included here, on the basis of which the Cesium Viewer decides which data is to be transmitted and when
to be displayed on the screen. The file can be viewed in a normal editor such as Notepad ++. Since it is a
JSON file, the use of a JSON plug-in for Notepad ++ such as JSToolNpp, or the VS Code are
recommended.

https://sourceforge.net/projects/jsminnpp/
https://www.coors-online.de/wp-content/uploads/2018/05/3DTiles-5.png

The tileset.json file contains the scene graph used by the Cesium Viewer. (CC BY 3.0 DE)

The structure of the JSON file corresponds to the quadtree structure. For each quadrant, the coordinates
of the envelope volume (boundingVolume), the display geometry of the tile (content) and the
max. Defects errors compared to the original building geometry (geometryError). The actual display
geometry is b3dmsaved in an external file in the binary format . The geometry is always saved as a
triangular mesh. Textures and attribute data can also be stored. These files can be found in the folder
structure according to the quadtree structure, e.g.
under ./b3dms/R/NE.b3dmand ./b3dms/R/NE/NE.b3dm. A simplified 3D model is saved for each
tile. The original building geometry can be found in the leaves of the scene graph, i.e. with tiles that are
not further subdivided. Based on the geometry error in the tile (geometryError) and the point of view
(camera) from which the scene is viewed, the Cesium Viewer decides which tiles are to be loaded and
displayed.

More details about 3D tiles can be found in Patrick Cozzi's blog .

https://creativecommons.org/licenses/by/3.0/de/
https://cesium.com/blog/2015/08/10/introducing-3d-tiles/
https://www.coors-online.de/wp-content/uploads/2018/05/3DTiles-JSON.png

In order to display the 3D tiles in Cesium, the files must be copied to the web server, e.g. in Apache in the
directory htdocs. In addition, an HTML file must be created in which the model is linked to the Cesium
viewer. The easiest way to do this is to copy the above-mentioned file HelloWorld.htmlfrom Cesium
and add the following JavaScript.

<script>

 var viewer = new Cesium.Viewer('cesiumContainer');

 var tileset = viewer.scene.primitives.add(new Cesium.Cesium3DTileset({

 url : './Wermelskirchen3DTiles/tileset.json'

 }));

 tileset.readyPromise.then(function() {

 var boundingSphere = tileset.boundingSphere;

 viewer.camera.viewBoundingSphere(boundingSphere,

 new Cesium.HeadingPitchRange(0.5, -0.2, boundingSphere.radius * 0.5));

 viewer.camera.lookAtTransform(Cesium.Matrix4.IDENTITY);

 }).otherwise(function(error) {

 throw(error);

 });

</script>

The Cesium Viewer is instantiated in the first line. The instruction viewer.scene.primitives.add
adds the tileset to the globe. This file contains all the information necessary to decide, depending on the
camera position, which tile must be loaded and displayed in the globe. The following instructions define
the initial position and orientation of the camera so that 3D building models can be seen when the website
is loaded.

The result is Wermelskirchen.html saved in the file. The first view of Wermelskirchen is shown in the
following figure.

Wermelskirchen Data source: GeoBasis NRW, 3D building model LoD2, CC BY 3.0 DE

https://creativecommons.org/licenses/by/3.0/de/
https://www.coors-online.de/wp-content/uploads/2018/05/Wermelskirchen-2.png

Part 2: Converting CityGML to 3D Tiles
The first part of the blog showed how a 3D city model can be visualized in the digital globe Cesium. But
where does the required 3D tiles scene graph come from?

Visualization of the 3D building model in Wermelskirchen. Data source: GeoBasis NRW, 3D building model LoD2, CC BY
3.0 DE

A 3D building model LoD 2 is available as a CityGML data set from Wermelskirchen via the Open Data
Portal NRW and can be downloaded here. To create a 3D tile scene graph, you have to convert the
CityGML database. To do this, you need software that can do that. There are enough options here:

• FME supports 3D tiles since version FME 2017.
• Companies such as virtualcitySYSTEMS but also Cesium offer the conversion of CityGML to 3D

Tiles as a service or such a converter is part of the product range
• The GeoRocket geodatabase with the additional GeoToolbox from Fraunhofer IGD includes a

CityGML to 3D tiles converter
Unfortunately, there is currently no free software for download that CityGML can use to convert to 3D
tiles. In this example the GeoToolbox from Fraunhofer IGD is used.

The CityGML model Wermelskirchen consists of numerous individual files. These files are first combined
into one large file wermelskirchen.gml. This can be done, for example, by importing the individual
files into the 3D CityDB or GeoRocket database and then exporting the entire area into a CityGML file.
With the instruction

geo-toolbox-3dtiles --in ".\in\wermelskirchen.gml" --out .\out\ --srsInCode

25832 --strategy quadTree --doubleSided true

the CityGML model is converted to 3D tiles. A quadtree structure is used as the strategy for tiling. The
EPSG code of the input data set is srsInCode specified with the parameter . The
parameter doubleSided defines whether a polygon is visible from both sides (true) or only from the

https://creativecommons.org/licenses/by/3.0/de/
https://creativecommons.org/licenses/by/3.0/de/
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/3d-gm_lod2/
https://www.safe.com/integrate/cesium-3d-tiles/
http://www.virtualcitysystems.de/
https://cesium.com/collaborate-with-us/
https://georocket.io/
https://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/
https://georocket.io/
https://www.coors-online.de/wp-content/uploads/2018/05/Wermelskirchen.png

direction opposite to the surface normal (false), i.e. from the outside. With this definition doubleSided
true, incorrectly oriented areas are no longer visible. Possible errors in the geometry remain, but you
just don't see them anymore.

The result is the file structure of 3D Tiles described in the first part of the blog . This still has to be made
available on a web server, and the 3D model is ready in the web browser. If you look closely, there is
unfortunately still something to be done. Wermelskirchen has lifted off and hovers over the globe. This is
because the globe does not use a terrain model, the ground level is always zero. The building geometry
uses the height above sea level. Therefore the buildings are in the air.

Wermelskirchen hovers over the globe. Data source: GeoBasis NRW, 3D building model LoD2, CC BY 3.0 DE

What can you do to avoid the floating buildings? Either the building floor plans are shifted to the height z =
0 or a terrain model is used.

In order to bring the buildings onto the globe, the height of the floor plan polygon of a building is
subtracted from all coordinates of the respective building geometry. The floor plan is then at z = 0,
otherwise the building geometry remains the same. The software solution clamp2groundfrom
Athanasios Koukofikis, HFT Stuttgart, can be used for this. To do this, the clamp2ground archive must
be unpacked. The CityGML file is clamp2ground\in\copied into the folder . Then
the clamp2groundsoftware is started with the .bat or .sh file of the same name. As a result, the
transformed CityGML file is then in the folder clamp2ground\out\. If the result file is converted to 3D
tiles as described above, the buildings are on the globe.

https://www.coors-online.de/web-basierte-visualisierung-von-3d-stadtmodellen/
https://creativecommons.org/licenses/by/3.0/de/
https://www.coors-online.de/wp-content/uploads/2018/05/clamp2ground.zip
https://www.coors-online.de/wp-content/uploads/2018/05/CityGML2-3Dtiles.png

Wermelskirchen projected onto the Cesium globe. Data source: GeoBasis NRW, 3D building model LoD2, CC BY 3.0 DE

Alternatively, a terrain model can also be integrated into the Cesium Globus. To do this, the JavaScript in
the file Wermelskirchen.html must be expanded. The following instruction tells Cesium that a 3D
terrain model should be used for the display. The terrain model is provided by the Cesium World
Terrain Server by default .
 // terrain
 var terrainProvider = new Cesium.createWorldTerrain({
 requestWaterMask : true, // required for water effects
 requestVertexNormals : true // required for terrain lighting
 });
 viewer.terrainProvider = terrainProvider;
 viewer.scene.globe.enableLighting = true; // set lighting to true

Unfortunately, the building and the terrain do not fit together perfectly, which is probably due to the
resolution of the terrain model. Other terrain models can also be integrated, as described in the Cesium
tutorial . The use of the terrain model, which is provided by GeoBasis NRW as Open Data , is a nice
exercise. Good luck with that.

https://creativecommons.org/licenses/by/3.0/de/
https://cesium.com/blog/2018/03/01/introducing-cesium-world-terrain/
https://cesium.com/blog/2018/03/01/introducing-cesium-world-terrain/
https://cesiumjs.org/tutorials/Terrain-Tutorial/
https://cesiumjs.org/tutorials/Terrain-Tutorial/
https://www.opengeodata.nrw.de/produkte/geobasis/dgm/
https://www.coors-online.de/wp-content/uploads/2018/05/CityGML2-3Dtiles-2.png

Wermelskirchen building model with terrain model, data source: terrain model: Cesium World Terrain, building model
GeoBasis NRW, 3D building model LoD2, CC BY 3.0 DE

Overview of the software used

• CesiumJS v1.45
• Web Server: Apache HTTP Server , is also in XAMPP included
• Editor: Notepad ++ with JSON plugin JSToolNpp
• Web browser: Firefox v56.0
• clamp2ground , Athanasios Koukofikis, HFT Stuttgart
• geotoolbox CityGML to 3D Tiles converter: unfortunately not available for download,

please contact Ralf Gutbell , Fraunhofer IGD.

Credentials
• Blog dragons8mycat: "Creating a Cesium virtual globe with v1.36" from 5.9.2017
• Tim Rivenbark, 3D building model New York in Cesium, 5.5.2017

Further work

• Coors, V. (Ed.): OGC Testbed 13 - 3D Tiles and I3S Interoperability and Performance
Engineering Report, 5.3.2018, http://docs.opengeospatial.org/per/17-046.html , PDF

• Hagedorn, B., Thum, S. Reitz, T., Coors, V., and Gutbell, P. (Eds.): OGC 3D Portrayal Service
1.0, 13.9.2017, http://docs.opengeospatial.org/is /15-001r4/15-001r4.html

Copyright
The texts and images provided in the blog are under the CC BY 3.0 DE license.

https://creativecommons.org/licenses/by/3.0/de/
https://cesiumjs.org/downloads/
https://httpd.apache.org/
https://www.apachefriends.org/de/index.html
https://notepad-plus-plus.org/
https://sourceforge.net/projects/jsminnpp/
https://www.mozilla.org/de/firefox/new/
https://www.coors-online.de/wp-content/uploads/2018/05/clamp2ground.zip
https://www.igd.fraunhofer.de/institut/ueber-uns/mitarbeiter/ralf-gutbell
https://dragons8mycat.com/2017/09/05/creating-a-cesium-virtual-globe-with-v1-36/
https://cesiumjs.org/demos/NewYork/
http://docs.opengeospatial.org/per/17-046.html
http://docs.opengeospatial.org/per/17-046.pdf
http://docs.opengeospatial.org/is/15-001r4/15-001r4.html
https://creativecommons.org/licenses/by/3.0/de/
https://www.coors-online.de/wp-content/uploads/2018/05/CityGML2-3Dtiles-3.png

	Part 1: Cesium Digital Globe and 3D Tiles
	The Digital Globe Cesium
	3D Tiles

	Part 2: Converting CityGML to 3D Tiles
	Overview of the software used
	Credentials
	Further work
	Copyright

