import os import sys import time import numpy as np import pandas as pd # UP import pickle import argparse from sklearn import metrics from sentence_transformers import models, SentenceTransformer from sklearn.linear_model import LogisticRegression, Perceptron from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_validate, cross_val_predict __author__ = "Yunus Eryilmaz" __version__ = "1.0" __date__ = "21.07.2021" __source__ = "https://pypi.org/project/sentence-transformers/0.3.0/" def main(): parser = argparse.ArgumentParser() # Where are we? location = "."; if getattr(sys, 'frozen', False): # running in a bundle location = sys._MEIPASS # Required parameters parser.add_argument( "--data", #default=None, default="/var/www/html/moodle/asyst/Source/Skript/outputs/test.tsv", type=str, # required=True, required=False, help="The input data file for the task.", ) parser.add_argument( "--output_dir", # default=None, default="/var/www/html/moodle/asyst/Source/Skript/outputs", type=str, # required=True, required=False, help="The output directory where predictions will be written.", ) parser.add_argument( "--model_dir", # default=None, default=location+"/Skript/german/models", type=str, # required=True, required=False, help="The directory where the ML models are stored.", ) args = parser.parse_args() # open a log file next to the executable with line buffering # out = open("log.txt", "a",buffering=1); # print("Started German processing in",location,file=out); # import SentenceTransformer-model start_time = time.time() # print("Reading from",args.data, file=out); with open(os.path.join(location,args.data)) as ft: dft = pd.read_csv(ft, delimiter='\t') # Sentences we want sentence embeddings for sentences1_test = dft['referenceAnswer'].values.tolist() sentences2_test = dft['studentAnswer'].values.tolist() # print("Input read:",sentences2_test, file=out); # Use BERT for mapping tokens to embeddings word_embedding_model = models.Transformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # pooling operation can choose by setting true (Apply mean pooling to get one fixed sized sentence vector) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) # compute the sentence embeddings for both sentences model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # print("Model loaded", file=out); sentence_embeddings1_test = model.encode(sentences1_test, convert_to_tensor=True, show_progress_bar=False) # print("Embeddings RefA:",sentence_embeddings1_test,file=out); sentence_embeddings2_test = model.encode(sentences2_test, convert_to_tensor=True, show_progress_bar=False) # print("Embeddings found", file=out); # Possible concatenations from the embedded sentences can be selected def similarity(sentence_embeddings1, sentence_embeddings2): # I2=(|u − v| + u ∗ v) simi = abs(np.subtract(sentence_embeddings1, sentence_embeddings2)) + np.multiply(sentence_embeddings1, sentence_embeddings2) return simi # calls the similarity function and get the concatenated values between the sentence embeddings computed_simis_test = similarity(sentence_embeddings1_test, sentence_embeddings2_test) # get the sentence embeddings and the labels fpr train and test X_test = computed_simis_test # Y_test = np.array(dft['label']) # UP: read pre-trained LR model clf_log = pickle.load(open("/var/www/html/moodle/asyst/Source/Skript/german/models/clf_BERT.pickle", "rb")) # print('--------Evaluate on Testset------- ', file=out) predictions = clf_log.predict(X_test) # UP print results with open(args.output_dir + "/predictions.txt", "w") as writer: writer.write("question\treferenceAnswer\tstudentAnswer\tsuggested grade\tobserved grade\n") for i in range(len(dft)): hrpred = "incorrect" if predictions[i] == 1: hrpred = "correct" writer.write( str(dft.iloc[i][0]) + "\t" + str(dft.iloc[i][1]) + "\t" + str(dft.iloc[i][2]) + "\t" + str(hrpred) + "\t" + str(dft.iloc[i][3]) + "\n" ) # print('\nExecution time:', time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time)),file=out) if __name__ == "__main__": main()