main.py 5.99 KiB
import librosa.feature
import pandas as pd
import numpy as np
from pathlib import Path
from os import chdir
import os
import csv
from tensorflow import keras
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from keras import models
from keras import layers
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
import constants
def create_csv_header():
    header = 'filename '
    for i in range(constants.MFCC_FEATURE_START, constants.MFCC_FEATURE_END):
        header += f' mfcc{i}'
    header += ' label'
    header = header.split()
    file = open(constants.FEATURES_CSV_NAME, 'w', newline='')
    with file:
        writer = csv.writer(file)
        writer.writerow(header)
def extract_features(trainingDataDir, trainingDataSubDirs):
    create_csv_header()
    # Looping over every file inside the subdirectories for feature extraction
    for trainingDataSubDir in trainingDataSubDirs:
        for fileName in os.listdir(trainingDataDir/f'{trainingDataSubDir}'):
            if fileName.endswith(".wav"):
                audioFile = trainingDataDir/f'{trainingDataSubDir}/{fileName}'
                print("Extracting Features from Directory "+trainingDataSubDir+" and file "+audioFile.name)
                y, sr = librosa.load(audioFile, mono=True)
                mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=(constants.MFCC_FEATURE_END - constants.MFCC_FEATURE_START))
                to_append = f'{audioFile.name}'
                for g in mfcc:
                    to_append += f' {np.mean(g)}'
                if trainingDataSubDir == constants.CAR:
                    to_append += f' {constants.LIGHT_WEIGHT}'
                elif trainingDataSubDir == constants.BUS:
                    to_append += f' {constants.MEDIUM_WEIGHT}'
                elif trainingDataSubDir == constants.TRUCK:
                    to_append += f' {constants.HEAVY_WEIGHT}'
                elif trainingDataSubDir == constants.MOTORCYCLE:
                    to_append += f' {constants.TWO_WHEELED}'
                elif trainingDataSubDir == constants.TRAM:
                    to_append += f' {constants.RAIL_BOUND}'
                file = open(constants.FEATURES_CSV_NAME, 'a', newline='')
                with file:
                    writer = csv.writer(file)
                    writer.writerow(to_append.split())
def preprocessing_csv_data():
    print("Reading Features... ")
    data = pd.read_csv(constants.FEATURES_CSV_NAME)
    data.head()
    # Dropping unnecessary columns (Column Filename is dropped)
    data = data.drop(['filename'], axis=1)
    data.head()
    return data
def encode_labels(data):
# Extracting classes/label column as y from csv and converting string labels to numbers using LabelEncoder audio_list = data.iloc[:, -1] encoder = LabelEncoder() target_labels = encoder.fit_transform(audio_list) return target_labels, encoder def normalize_data(data): # normalizing - Extracting Remaining Columns as X and normalizing them to a common scale scaler = StandardScaler() X = scaler.fit_transform(np.array(data.iloc[:, :-1], dtype=float)) return X def train_test_data_split(X, y): # splitting of dataset into train and test dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) return X_train, X_test, y_train, y_test def create_and_compile_model(): print("Creating a Model") # creating a model model = models.Sequential() model.add(layers.Dense(constants.HIDDEN_LAYER_1_DIMENSIONS, activation=constants.ACTIVATION_RELU, input_shape=(X.shape[1],))) model.add(layers.Dense(constants.HIDDEN_LAYER_2_DIMENSIONS, activation=constants.ACTIVATION_RELU)) model.add(layers.Dense(constants.HIDDEN_LAYER_3_DIMENSIONS, activation=constants.ACTIVATION_RELU)) model.add(layers.Dense(constants.OUTPUT_LAYER_DIMENSIONS, activation=constants.ACTIVATION_SOFTMAX)) print("Compiling a Model") model.compile(optimizer= constants.OPTIMIZER_ADAM, loss= constants.LOSS_FUNCTION_SPARSE, metrics=[constants.ACCURACY_METRICS]) return model def train_and_save_model(model, X_train, y_train, X_test, y_test): logdir = constants.LOG_DIR_PATH tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) print("Start Training...") history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test), callbacks=[tensorboard_callback]) # Saving the trained model to avoid re-training model.save(constants.TRAINED_MODEL) return history def predict(X_test, y_test): print("Predictions.....") predictions = np.argmax(model.predict(X_test), axis=-1) target_names = [constants.LIGHT_WEIGHT, constants.MEDIUM_WEIGHT, constants.HEAVY_WEIGHT,constants.TWO_WHEELED, constants.RAIL_BOUND] print(classification_report(y_test, predictions, target_names=target_names)) def plot_model_accuracy(history): # Plot graph Model Accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() def plot_model_loss(history): # Plot graph Model Loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right')
plt.show() # Changing Directory to Training Dataset Folder chdir(constants.TRAINING_DATA_DIRECTORY_NAME) trainingDataDir = Path.cwd() trainingDataSubDirs = os.listdir(trainingDataDir) extract_features(trainingDataDir, trainingDataSubDirs) data = preprocessing_csv_data() target_labels, encoder = encode_labels(data) X = normalize_data(data) X_train, X_test, y_train, y_test = train_test_data_split(X, target_labels) model = create_and_compile_model() history = train_and_save_model(model, X_train, y_train, X_test, y_test) predict(X_test, y_test) plot_model_accuracy(history) plot_model_loss(history)