add_trees.py 8.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
Script to automatically add potential trees in a given region, along roads and paths.

Road information is downloaded from OpenStreetMap.

Trees are exported in a CSV table, a PNG diagram and an HTML interactive map.
"""
import pickle
from pathlib import Path
from collections import namedtuple

import folium
import kdtree
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import numpy as np
import overpy
from pyproj import Transformer
from shapely import LineString, geometry, wkt
from shapely.ops import transform

from import_existing_trees import get_existing_trees

# TODO: Use Args
# TODO: Document
# TODO: Write issue
# TODO: Write tests?
# TODO: Export shapefile?

# From RegionChooser, or https://transfer.hft-stuttgart.de/gitlab/circulargreensimcity/circulargreensimcity/-/wikis/Fallstudien/Gromb%C3%BChl
WKT = "POLYGON((9.947021 49.803063, 9.947011 49.800917, 9.955025 49.800810, 9.955110 49.803019, 9.947021 49.803063))"
EXISTING_TREES = 'Trees_ideal_2_20240227/Trees_ideal_2_20240227.shp'
EXISTING_TREES = None
# WKT = "POLYGON((9.170419 48.782366, 9.170032 48.780825, 9.169904 48.780401, 9.170440 48.778733, 9.176877 48.780118, 9.177006 48.781193, 9.177049 48.782564, 9.176298 48.782593, 9.175440 48.782409, 9.174646 48.783399, 9.170419 48.782366))"
# Fellbach
# WKT = "POLYGON((9.271353 48.811327, 9.271911 48.809010, 9.272147 48.807187, 9.275838 48.807173, 9.275602 48.806749, 9.276138 48.806325, 9.277683 48.806424, 9.277319 48.812514, 9.275581 48.811991, 9.271353 48.811327))"
EPSG_ID = 25832
# Trees will be planted every TREE_DISTANCE along roads:
TREE_DISTANCE = 10  # [m]
# Unless there's already another tree closer than MIN_DISTANCE away:
MIN_DISTANCE = TREE_DISTANCE * 0.5  # [m]
# For display purposes only:
GRID = 100  # [m]

IGNORE_ROADS = set(['primary', 'unclassified', 'secondary',
                    'secondary_link', 'trunk', 'trunk_link', 'primary_link'])


SCRIPT_DIR = Path(__file__).resolve().parent


def load_region(wkt_polygon):
    region = wkt.loads(wkt_polygon)
    bounds = namedtuple("Bounds", "W S E N")(*region.bounds)
    return region, bounds


def get_basename(bounds):
    return f'{bounds.S}__{bounds.N}__{bounds.W}__{bounds.E}_{TREE_DISTANCE}m'.replace('.', '_')


def get_osm_roads(bounds):
    cache_dir = SCRIPT_DIR / 'cache'
    cache_dir.mkdir(exist_ok=True)

    cache_file = (cache_dir / get_basename(bounds)).with_suffix('.pickle')

    if cache_file.exists():
        print("Cache has been found. Parsing...")
        with open(cache_file, 'rb') as cache:
            ways = pickle.load(cache)
    else:
        print("Downloading data...")
        # TODO: Could add trees from OSM or Bäumekataster too.
        api = overpy.Overpass()
        result = api.query(f"""
        way({bounds.S},{bounds.W},{bounds.N},{bounds.E}) ["highway"];
        (._;>;);
        out body;
        """)
        ways = result.ways
        print("Caching data...")
        with open(cache_file, 'wb') as cache:
            pickle.dump(ways, cache)
    return ways


def set_plot(bounds, to_local_coordinates):
    x_min, y_min = to_local_coordinates.transform(bounds.W, bounds.S)
    x_max, y_max = to_local_coordinates.transform(bounds.E, bounds.N)
    ax = plt.axes()
    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    ax.set_aspect(1)

    x_grid = plticker.MultipleLocator(base=GRID)
    y_grid = plticker.MultipleLocator(base=GRID)
    ax.xaxis.set_major_locator(x_grid)
    ax.yaxis.set_major_locator(y_grid)
    return ax


def place_trees(existing_trees_coords, ways, region, to_local, tree_distance, min_distance_2):
    local_region = transform(to_local.transform, region)

    existing_trees = kdtree.create(existing_trees_coords)

    tree_xs = []
    tree_ys = []
    for x, y in existing_trees_coords:
        tree_xs.append(x)
        tree_ys.append(y)

    for way in ways:
        width = float(way.tags.get("width", 0))
        highway = way.tags.get("highway")
        if highway in IGNORE_ROADS:
            color = 'orange'
        else:
            color = 'gray'

        local_xy_s = [to_local.transform(node.lon, node.lat)
                      for node in way.nodes]

        tree_path = LineString(local_xy_s)

        if width:
            road_as_polygon = tree_path.buffer(width / 2, cap_style='flat')
            tree_path = road_as_polygon.exterior
            displayed_width = width
        else:
            # NOTE: Could try to guess width depending on highway type.
            displayed_width = 1

        xs, ys = zip(*local_xy_s)
        plt.plot(xs, ys, linewidth=displayed_width,
                 c=color, alpha=0.8, zorder=-1)

        distances = np.arange(0, tree_path.length, tree_distance)
        potential_trees = [tree_path.interpolate(
            distance) for distance in distances]
        if tree_path.boundary:
            potential_trees += [tree_path.boundary.geoms[-1]]

        for potential_tree in potential_trees:
            x = potential_tree.x
            y = potential_tree.y
            if local_region.contains(geometry.Point(x, y)):
                _nearest_tree, distance_2 = existing_trees.search_nn((x, y))
                if distance_2 > min_distance_2:
                    existing_trees.add((x, y))
                    tree_xs.append(x)
                    tree_ys.append(y)
    return tree_xs, tree_ys


def plot_trees(bounds, tree_xs, tree_ys, tree_distance):
    plt.scatter(tree_xs, tree_ys, s=2, c='green')

    plt.grid(True)
    plt.title(f"{bounds}\nTree distance : {tree_distance} m")
    plt.gcf().set_size_inches(15, 10)
    plt.savefig(
        SCRIPT_DIR / f"{get_basename(bounds)}.png", bbox_inches='tight', dpi=300)


def export_map(bounds, tree_xs, tree_ys, epsg_id):
    to_wgs84 = Transformer.from_crs(f"EPSG:{epsg_id}", "EPSG:4326", always_xy=True)
    interactive_map = folium.Map()
    interactive_map.fit_bounds([(bounds.S, bounds.W), (bounds.N, bounds.E)])

    radius = 2  # [m]
    for x, y in zip(tree_xs, tree_ys):
        lon, lat = to_wgs84.transform(x, y)
        folium.Circle(
            location=[lat, lon],
            radius=radius,
            color="black",
            weight=1,
            fill_opacity=0.9,
            opacity=1,
            fill_color="#00ff15",
            fill=False,  # gets overridden by fill_color
            popup="{} meters".format(radius),
            tooltip="I am a tree in street STREET",
        ).add_to(interactive_map)

    folium.TileLayer(
        tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
        attr='Esri',
        name='Esri Satellite',
        overlay=False,
        control=True
    ).add_to(interactive_map)

    interactive_map.save(f"{get_basename(bounds)}_trees.html")


def export_csv(bounds, tree_xs, tree_ys, wkt_polygon, tree_distance, min_distance, epsg_id):
    with open(SCRIPT_DIR / f"{get_basename(bounds)}_trees.csv", "w") as csv:
        csv.write(f"# Fake trees for; {wkt_polygon}\n")
        csv.write(f"# Tree distance along roads; {tree_distance}; [m]\n")
        csv.write(f"# Minimum allowed distance between trees; {min_distance}; [m]\n")
        csv.write(f"# EPSG; {epsg_id}\n")
        csv.write("# X; Y\n")
        csv.write("# [m]; [m]\n")
        for x, y in zip(tree_xs, tree_ys):
            csv.write(f"{x};{y}\n")

    print("DONE!")


def main(wkt_polygon, epsg_id, tree_distance, min_distance, import_tree_shp):
    region, bounds = load_region(wkt_polygon)
    ways = get_osm_roads(bounds)

    if import_tree_shp:
        existing_trees = get_existing_trees(import_tree_shp)
    else:
        existing_trees = []

    to_local = Transformer.from_crs("EPSG:4326", f"EPSG:{epsg_id}", always_xy=True)

    set_plot(bounds, to_local)
    tree_xs, tree_ys = place_trees(existing_trees, ways, region,
                                   to_local, tree_distance, min_distance**2)

    plot_trees(bounds, tree_xs, tree_ys, tree_distance)
    export_map(bounds, tree_xs, tree_ys, epsg_id)
    export_csv(bounds, tree_xs, tree_ys, wkt_polygon,
               tree_distance, min_distance, epsg_id)


if __name__ == "__main__":
    main(WKT, EPSG_ID, TREE_DISTANCE, MIN_DISTANCE, EXISTING_TREES)