Commit 1f7a20c1 authored by Eric Duminil's avatar Eric Duminil
Browse files

Merge branch 'develop'

No related merge requests found
Showing with 1142 additions and 941 deletions
+1142 -941
......@@ -22,6 +22,12 @@
#include <Arduino.h>
#include "driver/rmt.h"
#if defined(ESP_IDF_VERSION)
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
#define HAS_ESP_IDF_4
#endif
#endif
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
// to work with the Arduino version of the ESP-IDF (3.2)
......@@ -89,6 +95,7 @@ void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz)
if (!rmt_reserved_channels[i]) {
rmt_reserved_channels[i] = true;
channel = i;
break;
}
}
if (channel == ADAFRUIT_RMT_CHANNEL_MAX) {
......@@ -96,6 +103,10 @@ void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz)
return;
}
#if defined(HAS_ESP_IDF_4)
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
config.clk_div = 2;
#else
// Match default TX config from ESP-IDF version 3.4
rmt_config_t config = {
.rmt_mode = RMT_MODE_TX,
......@@ -113,12 +124,16 @@ void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz)
.idle_output_en = true,
}
};
#endif
rmt_config(&config);
rmt_driver_install(config.channel, 0, 0);
// Convert NS timings to ticks
uint32_t counter_clk_hz = 0;
#if defined(HAS_ESP_IDF_4)
rmt_get_counter_clock(channel, &counter_clk_hz);
#else
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
......@@ -129,6 +144,7 @@ void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz)
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = APB_CLK_FREQ / (div);
}
#endif
// NS to tick converter
float ratio = (float)counter_clk_hz / 1e9;
......
......@@ -17,16 +17,16 @@ static inline uint32_t _getCycleCount(void) {
}
#ifdef ESP8266
void ICACHE_RAM_ATTR espShow(
uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
IRAM_ATTR void espShow(
uint8_t pin, uint8_t *pixels, uint32_t numBytes, __attribute__((unused)) boolean is800KHz) {
#else
void espShow(
uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
#endif
#define CYCLES_800_T0H (F_CPU / 2500000) // 0.4us
#define CYCLES_800_T1H (F_CPU / 1250000) // 0.8us
#define CYCLES_800 (F_CPU / 800000) // 1.25us per bit
#define CYCLES_800_T0H (F_CPU / 2500001) // 0.4us
#define CYCLES_800_T1H (F_CPU / 1250001) // 0.8us
#define CYCLES_800 (F_CPU / 800001) // 1.25us per bit
#define CYCLES_400_T0H (F_CPU / 2000000) // 0.5uS
#define CYCLES_400_T1H (F_CPU / 833333) // 1.2us
#define CYCLES_400 (F_CPU / 400000) // 2.5us per bit
......
name=Adafruit NeoPixel
version=1.7.0
version=1.10.4
author=Adafruit
maintainer=Adafruit <info@adafruit.com>
sentence=Arduino library for controlling single-wire-based LED pixels and strip.
......
// -------------------------------------------------- //
// This file is autogenerated by pioasm; do not edit! //
// -------------------------------------------------- //
// Unless you know what you are doing...
// Lines 47 and 52 have been edited to set transmit bit count
#if !PICO_NO_HARDWARE
#include "hardware/pio.h"
#endif
// ------ //
// ws2812 //
// ------ //
#define ws2812_wrap_target 0
#define ws2812_wrap 3
#define ws2812_T1 2
#define ws2812_T2 5
#define ws2812_T3 3
static const uint16_t ws2812_program_instructions[] = {
// .wrap_target
0x6221, // 0: out x, 1 side 0 [2]
0x1123, // 1: jmp !x, 3 side 1 [1]
0x1400, // 2: jmp 0 side 1 [4]
0xa442, // 3: nop side 0 [4]
// .wrap
};
#if !PICO_NO_HARDWARE
static const struct pio_program ws2812_program = {
.instructions = ws2812_program_instructions,
.length = 4,
.origin = -1,
};
static inline pio_sm_config ws2812_program_get_default_config(uint offset) {
pio_sm_config c = pio_get_default_sm_config();
sm_config_set_wrap(&c, offset + ws2812_wrap_target, offset + ws2812_wrap);
sm_config_set_sideset(&c, 1, false, false);
return c;
}
#include "hardware/clocks.h"
static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin,
float freq, uint bits) {
pio_gpio_init(pio, pin);
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
pio_sm_config c = ws2812_program_get_default_config(offset);
sm_config_set_sideset_pins(&c, pin);
sm_config_set_out_shift(&c, false, true,
bits); // <----<<< Length changed to "bits"
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
sm_config_set_clkdiv(&c, div);
pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);
}
#endif
language: c
sudo: false
before_install:
- source <(curl -SLs https://raw.githubusercontent.com/adafruit/travis-ci-arduino/master/install.sh)
script:
- build_platform esp8266
notifications:
email:
on_success: change
on_failure: change
......@@ -25,7 +25,7 @@ NTPClient::NTPClient(UDP& udp) {
this->_udp = &udp;
}
NTPClient::NTPClient(UDP& udp, int timeOffset) {
NTPClient::NTPClient(UDP& udp, long timeOffset) {
this->_udp = &udp;
this->_timeOffset = timeOffset;
}
......@@ -35,24 +35,45 @@ NTPClient::NTPClient(UDP& udp, const char* poolServerName) {
this->_poolServerName = poolServerName;
}
NTPClient::NTPClient(UDP& udp, const char* poolServerName, int timeOffset) {
NTPClient::NTPClient(UDP& udp, IPAddress poolServerIP) {
this->_udp = &udp;
this->_poolServerIP = poolServerIP;
this->_poolServerName = NULL;
}
NTPClient::NTPClient(UDP& udp, const char* poolServerName, long timeOffset) {
this->_udp = &udp;
this->_timeOffset = timeOffset;
this->_poolServerName = poolServerName;
}
NTPClient::NTPClient(UDP& udp, const char* poolServerName, int timeOffset, unsigned long updateInterval) {
NTPClient::NTPClient(UDP& udp, IPAddress poolServerIP, long timeOffset){
this->_udp = &udp;
this->_timeOffset = timeOffset;
this->_poolServerIP = poolServerIP;
this->_poolServerName = NULL;
}
NTPClient::NTPClient(UDP& udp, const char* poolServerName, long timeOffset, unsigned long updateInterval) {
this->_udp = &udp;
this->_timeOffset = timeOffset;
this->_poolServerName = poolServerName;
this->_updateInterval = updateInterval;
}
NTPClient::NTPClient(UDP& udp, IPAddress poolServerIP, long timeOffset, unsigned long updateInterval) {
this->_udp = &udp;
this->_timeOffset = timeOffset;
this->_poolServerIP = poolServerIP;
this->_poolServerName = NULL;
this->_updateInterval = updateInterval;
}
void NTPClient::begin() {
this->begin(NTP_DEFAULT_LOCAL_PORT);
}
void NTPClient::begin(int port) {
void NTPClient::begin(unsigned int port) {
this->_port = port;
this->_udp->begin(this->_port);
......@@ -60,37 +81,15 @@ void NTPClient::begin(int port) {
this->_udpSetup = true;
}
bool NTPClient::isValid(byte * ntpPacket)
{
//Perform a few validity checks on the packet
if((ntpPacket[0] & 0b11000000) == 0b11000000) //Check for LI=UNSYNC
return false;
if((ntpPacket[0] & 0b00111000) >> 3 < 0b100) //Check for Version >= 4
return false;
if((ntpPacket[0] & 0b00000111) != 0b100) //Check for Mode == Server
return false;
if((ntpPacket[1] < 1) || (ntpPacket[1] > 15)) //Check for valid Stratum
return false;
if( ntpPacket[16] == 0 && ntpPacket[17] == 0 &&
ntpPacket[18] == 0 && ntpPacket[19] == 0 &&
ntpPacket[20] == 0 && ntpPacket[21] == 0 &&
ntpPacket[22] == 0 && ntpPacket[22] == 0) //Check for ReferenceTimestamp != 0
return false;
return true;
}
bool NTPClient::forceUpdate() {
#ifdef DEBUG_NTPClient
Serial.println("Update from NTP Server");
#endif
// flush any existing packets
while(this->_udp->parsePacket() != 0)
this->_udp->flush();
this->sendNTPPacket();
// Wait till data is there or timeout...
......@@ -99,20 +98,14 @@ bool NTPClient::forceUpdate() {
do {
delay ( 10 );
cb = this->_udp->parsePacket();
if(cb > 0)
{
this->_udp->read(this->_packetBuffer, NTP_PACKET_SIZE);
if(!this->isValid(this->_packetBuffer))
cb = 0;
}
if (timeout > 100) return false; // timeout after 1000 ms
timeout++;
} while (cb == 0);
this->_lastUpdate = millis() - (10 * (timeout + 1)); // Account for delay in reading the time
this->_udp->read(this->_packetBuffer, NTP_PACKET_SIZE);
unsigned long highWord = word(this->_packetBuffer[40], this->_packetBuffer[41]);
unsigned long lowWord = word(this->_packetBuffer[42], this->_packetBuffer[43]);
// combine the four bytes (two words) into a long integer
......@@ -121,73 +114,53 @@ bool NTPClient::forceUpdate() {
this->_currentEpoc = secsSince1900 - SEVENZYYEARS;
return true;
return true; // return true after successful update
}
bool NTPClient::update() {
if ((millis() - this->_lastUpdate >= this->_updateInterval) // Update after _updateInterval
|| this->_lastUpdate == 0) { // Update if there was no update yet.
if (!this->_udpSetup) this->begin(); // setup the UDP client if needed
if (!this->_udpSetup || this->_port != NTP_DEFAULT_LOCAL_PORT) this->begin(this->_port); // setup the UDP client if needed
return this->forceUpdate();
}
return true;
return false; // return false if update does not occur
}
bool NTPClient::isTimeSet() const {
return (this->_lastUpdate != 0); // returns true if the time has been set, else false
}
unsigned long NTPClient::getEpochTime() {
unsigned long NTPClient::getEpochTime() const {
return this->_timeOffset + // User offset
this->_currentEpoc + // Epoc returned by the NTP server
this->_currentEpoc + // Epoch returned by the NTP server
((millis() - this->_lastUpdate) / 1000); // Time since last update
}
int NTPClient::getDay() {
int NTPClient::getDay() const {
return (((this->getEpochTime() / 86400L) + 4 ) % 7); //0 is Sunday
}
int NTPClient::getHours() {
int NTPClient::getHours() const {
return ((this->getEpochTime() % 86400L) / 3600);
}
int NTPClient::getMinutes() {
int NTPClient::getMinutes() const {
return ((this->getEpochTime() % 3600) / 60);
}
int NTPClient::getSeconds() {
int NTPClient::getSeconds() const {
return (this->getEpochTime() % 60);
}
void NTPClient::getFormattedTime(char *formatted_time, unsigned long secs) {
unsigned long rawTime = secs ? secs : this->getEpochTime();
unsigned int hours = (rawTime % 86400L) / 3600;
unsigned int minutes = (rawTime % 3600) / 60;
unsigned int seconds = rawTime % 60;
snprintf(formatted_time, 9, "%02d:%02d:%02d", hours, minutes, seconds);
}
String NTPClient::getFormattedTime() const {
unsigned long rawTime = this->getEpochTime();
unsigned long hours = (rawTime % 86400L) / 3600;
String hoursStr = hours < 10 ? "0" + String(hours) : String(hours);
// Based on https://github.com/PaulStoffregen/Time/blob/master/Time.cpp
void NTPClient::getFormattedDate(char *formatted_date, unsigned long secs) {
unsigned long rawTime = (secs ? secs : this->getEpochTime()) / 86400L; // in days
unsigned long days = 0, year = 1970;
uint8_t month;
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31};
unsigned long minutes = (rawTime % 3600) / 60;
String minuteStr = minutes < 10 ? "0" + String(minutes) : String(minutes);
while((days += (LEAP_YEAR(year) ? 366 : 365)) <= rawTime)
year++;
rawTime -= days - (LEAP_YEAR(year) ? 366 : 365); // now it is days in this year, starting at 0
days=0;
for (month=0; month<12; month++) {
uint8_t monthLength;
if (month==1) { // february
monthLength = LEAP_YEAR(year) ? 29 : 28;
} else {
monthLength = monthDays[month];
}
if (rawTime < monthLength) break;
rawTime -= monthLength;
}
month++; // jan is month 1
rawTime++; // first day is day 1
unsigned long seconds = rawTime % 60;
String secondStr = seconds < 10 ? "0" + String(seconds) : String(seconds);
char formatted_time[9];
this->getFormattedTime(formatted_time, secs);
snprintf(formatted_date, 23, "%4lu-%02d-%02lu %s%+03d", year, month, rawTime, formatted_time, this->_timeOffset / 3600);
return hoursStr + ":" + minuteStr + ":" + secondStr;
}
void NTPClient::end() {
......@@ -204,28 +177,84 @@ void NTPClient::setUpdateInterval(unsigned long updateInterval) {
this->_updateInterval = updateInterval;
}
void NTPClient::setPoolServerName(const char* poolServerName) {
this->_poolServerName = poolServerName;
}
void NTPClient::sendNTPPacket() {
// set all bytes in the buffer to 0
memset(this->_packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
this->_packetBuffer[0] = 0b11100011; // LI, Version, Mode
this->_packetBuffer[1] = 0; // Stratum, or type of clock
this->_packetBuffer[2] = 6; // Polling Interval
this->_packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
this->_packetBuffer[12] = 0x49;
this->_packetBuffer[12] = 49;
this->_packetBuffer[13] = 0x4E;
this->_packetBuffer[14] = 0x49;
this->_packetBuffer[15] = 0x52;
this->_packetBuffer[14] = 49;
this->_packetBuffer[15] = 52;
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
this->_udp->beginPacket(this->_poolServerName, 123); //NTP requests are to port 123
if (this->_poolServerName) {
this->_udp->beginPacket(this->_poolServerName, 123);
} else {
this->_udp->beginPacket(this->_poolServerIP, 123);
}
this->_udp->write(this->_packetBuffer, NTP_PACKET_SIZE);
this->_udp->endPacket();
}
void NTPClient::setRandomPort(unsigned int minValue, unsigned int maxValue) {
randomSeed(analogRead(0));
this->_port = random(minValue, maxValue);
}
/*** Custom code for ampel-firmware ***/
void NTPClient::getFormattedTime(char *formatted_time, unsigned long secs) {
unsigned long rawTime = secs ? secs : this->getEpochTime();
unsigned int hours = (rawTime % 86400L) / 3600;
unsigned int minutes = (rawTime % 3600) / 60;
unsigned int seconds = rawTime % 60;
snprintf(formatted_time, 9, "%02d:%02d:%02d", hours, minutes, seconds);
}
#define LEAP_YEAR(Y) ( (Y>0) && !(Y%4) && ( (Y%100) || !(Y%400) ) )
// Based on https://github.com/PaulStoffregen/Time/blob/master/Time.cpp
void NTPClient::getFormattedDate(char *formatted_date, unsigned long secs) {
unsigned long rawTime = (secs ? secs : this->getEpochTime()) / 86400L; // in days
unsigned long days = 0;
unsigned int year = 1970;
uint8_t month;
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31};
while((days += (LEAP_YEAR(year) ? 366 : 365)) <= rawTime)
year++;
rawTime -= days - (LEAP_YEAR(year) ? 366 : 365); // now it is days in this year, starting at 0
days=0;
for (month=0; month<12; month++) {
uint8_t monthLength;
if (month==1) { // february
monthLength = LEAP_YEAR(year) ? 29 : 28;
} else {
monthLength = monthDays[month];
}
if (rawTime < monthLength) break;
rawTime -= monthLength;
}
month++; // jan is month 1
rawTime++; // first day is day 1
char formatted_time[9];
this->getFormattedTime(formatted_time, secs);
snprintf(formatted_date, 23, "%4d-%02d-%02lu %s%+03ld", year, month, rawTime, formatted_time, (this->_timeOffset / 3600) % 100);
}
void NTPClient::setEpochTime(unsigned long secs) {
this->_currentEpoc = secs;
}
/**************************************************************/
\ No newline at end of file
......@@ -7,8 +7,6 @@
#define SEVENZYYEARS 2208988800UL
#define NTP_PACKET_SIZE 48
#define NTP_DEFAULT_LOCAL_PORT 1337
#define LEAP_YEAR(Y) ( (Y>0) && !(Y%4) && ( (Y%100) || !(Y%400) ) )
class NTPClient {
private:
......@@ -16,8 +14,9 @@ class NTPClient {
bool _udpSetup = false;
const char* _poolServerName = "pool.ntp.org"; // Default time server
int _port = NTP_DEFAULT_LOCAL_PORT;
int _timeOffset = 0;
IPAddress _poolServerIP;
unsigned int _port = NTP_DEFAULT_LOCAL_PORT;
long _timeOffset = 0;
unsigned long _updateInterval = 60000; // In ms
......@@ -27,14 +26,28 @@ class NTPClient {
byte _packetBuffer[NTP_PACKET_SIZE];
void sendNTPPacket();
bool isValid(byte * ntpPacket);
public:
NTPClient(UDP& udp);
NTPClient(UDP& udp, int timeOffset);
NTPClient(UDP& udp, long timeOffset);
NTPClient(UDP& udp, const char* poolServerName);
NTPClient(UDP& udp, const char* poolServerName, int timeOffset);
NTPClient(UDP& udp, const char* poolServerName, int timeOffset, unsigned long updateInterval);
NTPClient(UDP& udp, const char* poolServerName, long timeOffset);
NTPClient(UDP& udp, const char* poolServerName, long timeOffset, unsigned long updateInterval);
NTPClient(UDP& udp, IPAddress poolServerIP);
NTPClient(UDP& udp, IPAddress poolServerIP, long timeOffset);
NTPClient(UDP& udp, IPAddress poolServerIP, long timeOffset, unsigned long updateInterval);
/**
* Set time server name
*
* @param poolServerName
*/
void setPoolServerName(const char* poolServerName);
/**
* Set random local port
*/
void setRandomPort(unsigned int minValue = 49152, unsigned int maxValue = 65535);
/**
* Starts the underlying UDP client with the default local port
......@@ -44,7 +57,7 @@ class NTPClient {
/**
* Starts the underlying UDP client with the specified local port
*/
void begin(int port);
void begin(unsigned int port);
/**
* This should be called in the main loop of your application. By default an update from the NTP Server is only
......@@ -61,10 +74,17 @@ class NTPClient {
*/
bool forceUpdate();
int getDay();
int getHours();
int getMinutes();
int getSeconds();
/**
* This allows to check if the NTPClient successfully received a NTP packet and set the time.
*
* @return true if time has been set, else false
*/
bool isTimeSet() const;
int getDay() const;
int getHours() const;
int getMinutes() const;
int getSeconds() const;
/**
* Changes the time offset. Useful for changing timezones dynamically
......@@ -78,28 +98,37 @@ class NTPClient {
void setUpdateInterval(unsigned long updateInterval);
/**
* @return secs argument (or 0 for current time) formatted like `hh:mm:ss`
*/
void getFormattedTime(char *formatted_time, unsigned long secs = 0);
* @return time formatted like `hh:mm:ss`
*/
String getFormattedTime() const;
/**
* @return time in seconds since Jan. 1, 1970
*/
unsigned long getEpochTime();
/**
* @return secs argument (or 0 for current date) formatted to ISO 8601
* like `2004-02-12T15:19:21+00:00`
*/
void getFormattedDate(char *formatted_date, unsigned long secs = 0);
unsigned long getEpochTime() const;
/**
* Stops the underlying UDP client
*/
void end();
/*** Custom code for ampel-firmware ***/
/**
* @return secs argument (or 0 for current time) formatted like `hh:mm:ss`
*/
void getFormattedTime(char *formatted_time, unsigned long secs = 0);
/**
* @return secs argument (or 0 for current date) formatted to ISO 8601
* like `2004-02-12T15:19:21+00:00`
*/
void getFormattedDate(char *formatted_date, unsigned long secs = 0);
/**
* Replace the NTP-fetched time with seconds since Jan. 1, 1970
*/
void setEpochTime(unsigned long secs);
/**************************************************************/
};
# NTPClient
[![Build Status](https://travis-ci.org/arduino-libraries/NTPClient.svg?branch=master)](https://travis-ci.org/arduino-libraries/NTPClient)
[![Check Arduino status](https://github.com/arduino-libraries/NTPClient/actions/workflows/check-arduino.yml/badge.svg)](https://github.com/arduino-libraries/NTPClient/actions/workflows/check-arduino.yml)
[![Compile Examples status](https://github.com/arduino-libraries/NTPClient/actions/workflows/compile-examples.yml/badge.svg)](https://github.com/arduino-libraries/NTPClient/actions/workflows/compile-examples.yml)
[![Spell Check status](https://github.com/arduino-libraries/NTPClient/actions/workflows/spell-check.yml/badge.svg)](https://github.com/arduino-libraries/NTPClient/actions/workflows/spell-check.yml)
Connect to a NTP server, here is how:
......@@ -22,7 +24,7 @@ WiFiUDP ntpUDP;
NTPClient timeClient(ntpUDP);
// You can specify the time server pool and the offset, (in seconds)
// additionaly you can specify the update interval (in milliseconds).
// additionally you can specify the update interval (in milliseconds).
// NTPClient timeClient(ntpUDP, "europe.pool.ntp.org", 3600, 60000);
void setup(){
......@@ -45,3 +47,6 @@ void loop() {
delay(1000);
}
```
## Function documentation
`getEpochTime` returns the Unix epoch, which are the seconds elapsed since 00:00:00 UTC on 1 January 1970 (leap seconds are ignored, every day is treated as having 86400 seconds). **Attention**: If you have set a time offset this time offset will be added to your epoch timestamp.
......@@ -12,9 +12,13 @@ begin KEYWORD2
end KEYWORD2
update KEYWORD2
forceUpdate KEYWORD2
isTimeSet KEYWORD2
getDay KEYWORD2
getHours KEYWORD2
getMinutes KEYWORD2
getSeconds KEYWORD2
getFormattedTime KEYWORD2
getEpochTime KEYWORD2
setTimeOffset KEYWORD2
setUpdateInterval KEYWORD2
setPoolServerName KEYWORD2
name=NTPClient
version=3.1.0
version=3.2.0
author=Fabrice Weinberg
maintainer=Fabrice Weinberg <fabrice@weinberg.me>
sentence=An NTPClient to connect to a time server
......
/*
PubSubClient.cpp - A simple client for MQTT.
Nick O'Leary
http://knolleary.net
*/
PubSubClient.cpp - A simple client for MQTT.
Nick O'Leary
http://knolleary.net
*/
#include "PubSubClient.h"
#include "Arduino.h"
PubSubClient::PubSubClient() {
this->_state = MQTT_DISCONNECTED;
this->_client = NULL;
this->stream = NULL;
setCallback(NULL);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(Client& client) {
this->_state = MQTT_DISCONNECTED;
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, Client& client) {
this->_state = MQTT_DISCONNECTED;
setServer(addr, port);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, Client& client, Stream& stream) {
this->_state = MQTT_DISCONNECTED;
setServer(addr,port);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client& client) {
this->_state = MQTT_DISCONNECTED;
setServer(addr, port);
setCallback(callback);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client& client, Stream& stream) {
this->_state = MQTT_DISCONNECTED;
setServer(addr,port);
setCallback(callback);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, Client& client) {
this->_state = MQTT_DISCONNECTED;
setServer(ip, port);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, Client& client, Stream& stream) {
this->_state = MQTT_DISCONNECTED;
setServer(ip,port);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client& client) {
this->_state = MQTT_DISCONNECTED;
setServer(ip, port);
setCallback(callback);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client& client, Stream& stream) {
this->_state = MQTT_DISCONNECTED;
setServer(ip,port);
setCallback(callback);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char* domain, uint16_t port, Client& client) {
this->_state = MQTT_DISCONNECTED;
setServer(domain,port);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char* domain, uint16_t port, Client& client, Stream& stream) {
this->_state = MQTT_DISCONNECTED;
setServer(domain,port);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char* domain, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client& client) {
this->_state = MQTT_DISCONNECTED;
setServer(domain,port);
setCallback(callback);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char* domain, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client& client, Stream& stream) {
this->_state = MQTT_DISCONNECTED;
setServer(domain,port);
setCallback(callback);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
this->_state = MQTT_DISCONNECTED;
this->_client = NULL;
this->stream = NULL;
setCallback(NULL);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(Client &client) {
this->_state = MQTT_DISCONNECTED;
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, Client &client) {
this->_state = MQTT_DISCONNECTED;
setServer(addr, port);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, Client &client, Stream &stream) {
this->_state = MQTT_DISCONNECTED;
setServer(addr, port);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client &client) {
this->_state = MQTT_DISCONNECTED;
setServer(addr, port);
setCallback(callback);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(IPAddress addr, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client &client, Stream &stream) {
this->_state = MQTT_DISCONNECTED;
setServer(addr, port);
setCallback(callback);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, Client &client) {
this->_state = MQTT_DISCONNECTED;
setServer(ip, port);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, Client &client, Stream &stream) {
this->_state = MQTT_DISCONNECTED;
setServer(ip, port);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client &client) {
this->_state = MQTT_DISCONNECTED;
setServer(ip, port);
setCallback(callback);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(uint8_t *ip, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client &client, Stream &stream) {
this->_state = MQTT_DISCONNECTED;
setServer(ip, port);
setCallback(callback);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char *domain, uint16_t port, Client &client) {
this->_state = MQTT_DISCONNECTED;
setServer(domain, port);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char *domain, uint16_t port, Client &client, Stream &stream) {
this->_state = MQTT_DISCONNECTED;
setServer(domain, port);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char *domain, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client &client) {
this->_state = MQTT_DISCONNECTED;
setServer(domain, port);
setCallback(callback);
setClient(client);
this->stream = NULL;
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::PubSubClient(const char *domain, uint16_t port, MQTT_CALLBACK_SIGNATURE, Client &client, Stream &stream) {
this->_state = MQTT_DISCONNECTED;
setServer(domain, port);
setCallback(callback);
setClient(client);
setStream(stream);
this->bufferSize = 0;
setBufferSize(MQTT_MAX_PACKET_SIZE);
setKeepAlive(MQTT_KEEPALIVE);
setSocketTimeout(MQTT_SOCKET_TIMEOUT);
}
PubSubClient::~PubSubClient() {
......@@ -163,424 +163,431 @@ PubSubClient::~PubSubClient() {
}
boolean PubSubClient::connect(const char *id) {
return connect(id,NULL,NULL,0,0,0,0,1);
return connect(id, NULL, NULL, 0, 0, 0, 0, 1);
}
boolean PubSubClient::connect(const char *id, const char *user, const char *pass) {
return connect(id,user,pass,0,0,0,0,1);
return connect(id, user, pass, 0, 0, 0, 0, 1);
}
boolean PubSubClient::connect(const char *id, const char* willTopic, uint8_t willQos, boolean willRetain, const char* willMessage) {
return connect(id,NULL,NULL,willTopic,willQos,willRetain,willMessage,1);
boolean PubSubClient::connect(const char *id, const char *willTopic, uint8_t willQos, boolean willRetain,
const char *willMessage) {
return connect(id, NULL, NULL, willTopic, willQos, willRetain, willMessage, 1);
}
boolean PubSubClient::connect(const char *id, const char *user, const char *pass, const char* willTopic, uint8_t willQos, boolean willRetain, const char* willMessage) {
return connect(id,user,pass,willTopic,willQos,willRetain,willMessage,1);
boolean PubSubClient::connect(const char *id, const char *user, const char *pass, const char *willTopic,
uint8_t willQos, boolean willRetain, const char *willMessage) {
return connect(id, user, pass, willTopic, willQos, willRetain, willMessage, 1);
}
boolean PubSubClient::connect(const char *id, const char *user, const char *pass, const char* willTopic, uint8_t willQos, boolean willRetain, const char* willMessage, boolean cleanSession) {
if (!connected()) {
int result = 0;
boolean PubSubClient::connect(const char *id, const char *user, const char *pass, const char *willTopic,
uint8_t willQos, boolean willRetain, const char *willMessage, boolean cleanSession) {
if (!connected()) {
int result = 0;
if (_client->connected()) {
result = 1;
} else {
if (domain != NULL) {
result = _client->connect(this->domain, this->port);
} else {
result = _client->connect(this->ip, this->port);
}
}
if(_client->connected()) {
result = 1;
} else {
if (domain != NULL) {
result = _client->connect(this->domain, this->port);
} else {
result = _client->connect(this->ip, this->port);
}
}
if (result == 1) {
nextMsgId = 1;
// Leave room in the buffer for header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
unsigned int j;
if (result == 1) {
nextMsgId = 1;
// Leave room in the buffer for header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
unsigned int j;
#if MQTT_VERSION == MQTT_VERSION_3_1
uint8_t d[9] = {0x00,0x06,'M','Q','I','s','d','p', MQTT_VERSION};
#define MQTT_HEADER_VERSION_LENGTH 9
#elif MQTT_VERSION == MQTT_VERSION_3_1_1
uint8_t d[7] = {0x00,0x04,'M','Q','T','T',MQTT_VERSION};
uint8_t d[7] = { 0x00, 0x04, 'M', 'Q', 'T', 'T', MQTT_VERSION };
#define MQTT_HEADER_VERSION_LENGTH 7
#endif
for (j = 0;j<MQTT_HEADER_VERSION_LENGTH;j++) {
this->buffer[length++] = d[j];
}
uint8_t v;
if (willTopic) {
v = 0x04|(willQos<<3)|(willRetain<<5);
} else {
v = 0x00;
}
if (cleanSession) {
v = v|0x02;
}
if(user != NULL) {
v = v|0x80;
if(pass != NULL) {
v = v|(0x80>>1);
}
}
this->buffer[length++] = v;
this->buffer[length++] = ((this->keepAlive) >> 8);
this->buffer[length++] = ((this->keepAlive) & 0xFF);
CHECK_STRING_LENGTH(length,id)
length = writeString(id,this->buffer,length);
if (willTopic) {
CHECK_STRING_LENGTH(length,willTopic)
length = writeString(willTopic,this->buffer,length);
CHECK_STRING_LENGTH(length,willMessage)
length = writeString(willMessage,this->buffer,length);
}
if(user != NULL) {
CHECK_STRING_LENGTH(length,user)
length = writeString(user,this->buffer,length);
if(pass != NULL) {
CHECK_STRING_LENGTH(length,pass)
length = writeString(pass,this->buffer,length);
}
}
for (j = 0; j < MQTT_HEADER_VERSION_LENGTH; j++) {
this->buffer[length++] = d[j];
}
uint8_t v;
if (willTopic) {
v = 0x04 | (willQos << 3) | (willRetain << 5);
} else {
v = 0x00;
}
if (cleanSession) {
v = v | 0x02;
}
if (user != NULL) {
v = v | 0x80;
if (pass != NULL) {
v = v | (0x80 >> 1);
}
}
this->buffer[length++] = v;
this->buffer[length++] = ((this->keepAlive) >> 8);
this->buffer[length++] = ((this->keepAlive) & 0xFF);
CHECK_STRING_LENGTH(length, id)
length = writeString(id, this->buffer, length);
if (willTopic) {
CHECK_STRING_LENGTH(length, willTopic)
length = writeString(willTopic, this->buffer, length);
CHECK_STRING_LENGTH(length, willMessage)
length = writeString(willMessage, this->buffer, length);
}
if (user != NULL) {
CHECK_STRING_LENGTH(length, user)
length = writeString(user, this->buffer, length);
if (pass != NULL) {
CHECK_STRING_LENGTH(length, pass)
length = writeString(pass, this->buffer, length);
}
}
write(MQTTCONNECT,this->buffer,length-MQTT_MAX_HEADER_SIZE);
write(MQTTCONNECT, this->buffer, length - MQTT_MAX_HEADER_SIZE);
lastInActivity = lastOutActivity = millis();
lastInActivity = lastOutActivity = millis();
while (!_client->available()) {
unsigned long t = millis();
if (t-lastInActivity >= ((int32_t) this->socketTimeout*1000UL)) {
_state = MQTT_CONNECTION_TIMEOUT;
_client->stop();
return false;
}
}
uint8_t llen;
uint32_t len = readPacket(&llen);
if (len == 4) {
if (buffer[3] == 0) {
lastInActivity = millis();
pingOutstanding = false;
_state = MQTT_CONNECTED;
return true;
} else {
_state = buffer[3];
}
}
_client->stop();
while (!_client->available()) {
unsigned long t = millis();
if (t - lastInActivity >= ((int32_t) this->socketTimeout * 1000UL)) {
_state = MQTT_CONNECTION_TIMEOUT;
_client->stop();
return false;
}
}
uint8_t llen;
uint32_t len = readPacket(&llen);
if (len == 4) {
if (buffer[3] == 0) {
lastInActivity = millis();
pingOutstanding = false;
_state = MQTT_CONNECTED;
return true;
} else {
_state = MQTT_CONNECT_FAILED;
_state = buffer[3];
}
return false;
}
_client->stop();
} else {
_state = MQTT_CONNECT_FAILED;
}
return true;
return false;
}
return true;
}
// reads a byte into result
boolean PubSubClient::readByte(uint8_t * result) {
uint32_t previousMillis = millis();
while(!_client->available()) {
yield();
uint32_t currentMillis = millis();
if(currentMillis - previousMillis >= ((int32_t) this->socketTimeout * 1000)){
return false;
}
}
*result = _client->read();
return true;
boolean PubSubClient::readByte(uint8_t *result) {
uint32_t previousMillis = millis();
while (!_client->available()) {
yield();
uint32_t currentMillis = millis();
if (currentMillis - previousMillis >= ((int32_t) this->socketTimeout * 1000)) {
return false;
}
}
*result = _client->read();
return true;
}
// reads a byte into result[*index] and increments index
boolean PubSubClient::readByte(uint8_t * result, uint16_t * index){
boolean PubSubClient::readByte(uint8_t *result, uint16_t *index) {
uint16_t current_index = *index;
uint8_t * write_address = &(result[current_index]);
if(readByte(write_address)){
uint8_t *write_address = &(result[current_index]);
if (readByte(write_address)) {
*index = current_index + 1;
return true;
}
return false;
}
uint32_t PubSubClient::readPacket(uint8_t* lengthLength) {
uint16_t len = 0;
if(!readByte(this->buffer, &len)) return 0;
bool isPublish = (this->buffer[0]&0xF0) == MQTTPUBLISH;
uint32_t multiplier = 1;
uint32_t length = 0;
uint8_t digit = 0;
uint16_t skip = 0;
uint32_t start = 0;
do {
if (len == 5) {
// Invalid remaining length encoding - kill the connection
_state = MQTT_DISCONNECTED;
_client->stop();
return 0;
}
if(!readByte(&digit)) return 0;
this->buffer[len++] = digit;
length += (digit & 127) * multiplier;
multiplier <<=7; //multiplier *= 128
} while ((digit & 128) != 0);
*lengthLength = len-1;
if (isPublish) {
// Read in topic length to calculate bytes to skip over for Stream writing
if(!readByte(this->buffer, &len)) return 0;
if(!readByte(this->buffer, &len)) return 0;
skip = (this->buffer[*lengthLength+1]<<8)+this->buffer[*lengthLength+2];
start = 2;
if (this->buffer[0]&MQTTQOS1) {
// skip message id
skip += 2;
}
uint32_t PubSubClient::readPacket(uint8_t *lengthLength) {
uint16_t len = 0;
if (!readByte(this->buffer, &len))
return 0;
bool isPublish = (this->buffer[0] & 0xF0) == MQTTPUBLISH;
uint32_t multiplier = 1;
uint32_t length = 0;
uint8_t digit = 0;
uint16_t skip = 0;
uint32_t start = 0;
do {
if (len == 5) {
// Invalid remaining length encoding - kill the connection
_state = MQTT_DISCONNECTED;
_client->stop();
return 0;
}
uint32_t idx = len;
for (uint32_t i = start;i<length;i++) {
if(!readByte(&digit)) return 0;
if (this->stream) {
if (isPublish && idx-*lengthLength-2>skip) {
this->stream->write(digit);
}
}
if (len < this->bufferSize) {
this->buffer[len] = digit;
len++;
}
idx++;
if (!readByte(&digit))
return 0;
this->buffer[len++] = digit;
length += (digit & 127) * multiplier;
multiplier <<= 7; //multiplier *= 128
} while ((digit & 128) != 0);
*lengthLength = len - 1;
if (isPublish) {
// Read in topic length to calculate bytes to skip over for Stream writing
if (!readByte(this->buffer, &len))
return 0;
if (!readByte(this->buffer, &len))
return 0;
skip = (this->buffer[*lengthLength + 1] << 8) + this->buffer[*lengthLength + 2];
start = 2;
if (this->buffer[0] & MQTTQOS1) {
// skip message id
skip += 2;
}
}
uint32_t idx = len;
for (uint32_t i = start; i < length; i++) {
if (!readByte(&digit))
return 0;
if (this->stream) {
if (isPublish && idx - *lengthLength - 2 > skip) {
this->stream->write(digit);
}
}
if (!this->stream && idx > this->bufferSize) {
len = 0; // This will cause the packet to be ignored.
if (len < this->bufferSize) {
this->buffer[len] = digit;
len++;
}
return len;
idx++;
}
if (!this->stream && idx > this->bufferSize) {
len = 0; // This will cause the packet to be ignored.
}
return len;
}
boolean PubSubClient::loop() {
if (connected()) {
unsigned long t = millis();
if ((t - lastInActivity > this->keepAlive*1000UL) || (t - lastOutActivity > this->keepAlive*1000UL)) {
if (pingOutstanding) {
this->_state = MQTT_CONNECTION_TIMEOUT;
_client->stop();
return false;
if (connected()) {
unsigned long t = millis();
if ((t - lastInActivity > this->keepAlive * 1000UL) || (t - lastOutActivity > this->keepAlive * 1000UL)) {
if (pingOutstanding) {
this->_state = MQTT_CONNECTION_TIMEOUT;
_client->stop();
return false;
} else {
this->buffer[0] = MQTTPINGREQ;
this->buffer[1] = 0;
_client->write(this->buffer, 2);
lastOutActivity = t;
lastInActivity = t;
pingOutstanding = true;
}
}
if (_client->available()) {
uint8_t llen;
uint16_t len = readPacket(&llen);
uint16_t msgId = 0;
uint8_t *payload;
if (len > 0) {
lastInActivity = t;
uint8_t type = this->buffer[0] & 0xF0;
if (type == MQTTPUBLISH) {
if (callback) {
uint16_t tl = (this->buffer[llen + 1] << 8) + this->buffer[llen + 2]; /* topic length in bytes */
memmove(this->buffer + llen + 2, this->buffer + llen + 3, tl); /* move topic inside buffer 1 byte to front */
this->buffer[llen + 2 + tl] = 0; /* end the topic as a 'C' string with \x00 */
char *topic = (char*) this->buffer + llen + 2;
// msgId only present for QOS>0
if ((this->buffer[0] & 0x06) == MQTTQOS1) {
msgId = (this->buffer[llen + 3 + tl] << 8) + this->buffer[llen + 3 + tl + 1];
payload = this->buffer + llen + 3 + tl + 2;
callback(topic, payload, len - llen - 3 - tl - 2);
this->buffer[0] = MQTTPUBACK;
this->buffer[1] = 2;
this->buffer[2] = (msgId >> 8);
this->buffer[3] = (msgId & 0xFF);
_client->write(this->buffer, 4);
lastOutActivity = t;
} else {
this->buffer[0] = MQTTPINGREQ;
this->buffer[1] = 0;
_client->write(this->buffer,2);
lastOutActivity = t;
lastInActivity = t;
pingOutstanding = true;
}
}
if (_client->available()) {
uint8_t llen;
uint16_t len = readPacket(&llen);
uint16_t msgId = 0;
uint8_t *payload;
if (len > 0) {
lastInActivity = t;
uint8_t type = this->buffer[0]&0xF0;
if (type == MQTTPUBLISH) {
if (callback) {
uint16_t tl = (this->buffer[llen+1]<<8)+this->buffer[llen+2]; /* topic length in bytes */
memmove(this->buffer+llen+2,this->buffer+llen+3,tl); /* move topic inside buffer 1 byte to front */
this->buffer[llen+2+tl] = 0; /* end the topic as a 'C' string with \x00 */
char *topic = (char*) this->buffer+llen+2;
// msgId only present for QOS>0
if ((this->buffer[0]&0x06) == MQTTQOS1) {
msgId = (this->buffer[llen+3+tl]<<8)+this->buffer[llen+3+tl+1];
payload = this->buffer+llen+3+tl+2;
callback(topic,payload,len-llen-3-tl-2);
this->buffer[0] = MQTTPUBACK;
this->buffer[1] = 2;
this->buffer[2] = (msgId >> 8);
this->buffer[3] = (msgId & 0xFF);
_client->write(this->buffer,4);
lastOutActivity = t;
} else {
payload = this->buffer+llen+3+tl;
callback(topic,payload,len-llen-3-tl);
}
}
} else if (type == MQTTPINGREQ) {
this->buffer[0] = MQTTPINGRESP;
this->buffer[1] = 0;
_client->write(this->buffer,2);
} else if (type == MQTTPINGRESP) {
pingOutstanding = false;
}
} else if (!connected()) {
// readPacket has closed the connection
return false;
payload = this->buffer + llen + 3 + tl;
callback(topic, payload, len - llen - 3 - tl);
}
}
} else if (type == MQTTPINGREQ) {
this->buffer[0] = MQTTPINGRESP;
this->buffer[1] = 0;
_client->write(this->buffer, 2);
} else if (type == MQTTPINGRESP) {
pingOutstanding = false;
}
return true;
} else if (!connected()) {
// readPacket has closed the connection
return false;
}
}
return false;
return true;
}
return false;
}
boolean PubSubClient::publish(const char* topic, const char* payload) {
return publish(topic,(const uint8_t*)payload, payload ? strnlen(payload, this->bufferSize) : 0,false);
boolean PubSubClient::publish(const char *topic, const char *payload) {
return publish(topic, (const uint8_t*) payload, payload ? strnlen(payload, this->bufferSize) : 0, false);
}
boolean PubSubClient::publish(const char* topic, const char* payload, boolean retained) {
return publish(topic,(const uint8_t*)payload, payload ? strnlen(payload, this->bufferSize) : 0,retained);
boolean PubSubClient::publish(const char *topic, const char *payload, boolean retained) {
return publish(topic, (const uint8_t*) payload, payload ? strnlen(payload, this->bufferSize) : 0, retained);
}
boolean PubSubClient::publish(const char* topic, const uint8_t* payload, unsigned int plength) {
return publish(topic, payload, plength, false);
boolean PubSubClient::publish(const char *topic, const uint8_t *payload, unsigned int plength) {
return publish(topic, payload, plength, false);
}
boolean PubSubClient::publish(const char* topic, const uint8_t* payload, unsigned int plength, boolean retained) {
if (connected()) {
if (this->bufferSize < MQTT_MAX_HEADER_SIZE + 2+strnlen(topic, this->bufferSize) + plength) {
// Too long
return false;
}
// Leave room in the buffer for header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
length = writeString(topic,this->buffer,length);
// Add payload
uint16_t i;
for (i=0;i<plength;i++) {
this->buffer[length++] = payload[i];
}
boolean PubSubClient::publish(const char *topic, const uint8_t *payload, unsigned int plength, boolean retained) {
if (connected()) {
if (this->bufferSize < MQTT_MAX_HEADER_SIZE + 2 + strnlen(topic, this->bufferSize) + plength) {
// Too long
return false;
}
// Leave room in the buffer for header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
length = writeString(topic, this->buffer, length);
// Add payload
uint16_t i;
for (i = 0; i < plength; i++) {
this->buffer[length++] = payload[i];
}
// Write the header
uint8_t header = MQTTPUBLISH;
if (retained) {
header |= 1;
}
return write(header,this->buffer,length-MQTT_MAX_HEADER_SIZE);
// Write the header
uint8_t header = MQTTPUBLISH;
if (retained) {
header |= 1;
}
return false;
return write(header, this->buffer, length - MQTT_MAX_HEADER_SIZE);
}
return false;
}
boolean PubSubClient::publish_P(const char* topic, const char* payload, boolean retained) {
return publish_P(topic, (const uint8_t*)payload, payload ? strnlen(payload, this->bufferSize) : 0, retained);
boolean PubSubClient::publish_P(const char *topic, const char *payload, boolean retained) {
return publish_P(topic, (const uint8_t*) payload, payload ? strnlen(payload, this->bufferSize) : 0, retained);
}
boolean PubSubClient::publish_P(const char* topic, const uint8_t* payload, unsigned int plength, boolean retained) {
uint8_t llen = 0;
uint8_t digit;
unsigned int rc = 0;
uint16_t tlen;
unsigned int pos = 0;
unsigned int i;
uint8_t header;
unsigned int len;
int expectedLength;
boolean PubSubClient::publish_P(const char *topic, const uint8_t *payload, unsigned int plength, boolean retained) {
uint8_t llen = 0;
uint8_t digit;
unsigned int rc = 0;
uint16_t tlen;
unsigned int pos = 0;
unsigned int i;
uint8_t header;
unsigned int len;
uint32_t expectedLength;
if (!connected()) {
return false;
}
if (!connected()) {
return false;
}
tlen = strnlen(topic, this->bufferSize);
tlen = strnlen(topic, this->bufferSize);
header = MQTTPUBLISH;
if (retained) {
header |= 1;
header = MQTTPUBLISH;
if (retained) {
header |= 1;
}
this->buffer[pos++] = header;
len = plength + 2 + tlen;
do {
digit = len & 127; //digit = len %128
len >>= 7; //len = len / 128
if (len > 0) {
digit |= 0x80;
}
this->buffer[pos++] = header;
len = plength + 2 + tlen;
do {
digit = len & 127; //digit = len %128
len >>= 7; //len = len / 128
if (len > 0) {
digit |= 0x80;
}
this->buffer[pos++] = digit;
llen++;
} while(len>0);
this->buffer[pos++] = digit;
llen++;
} while (len > 0);
pos = writeString(topic,this->buffer,pos);
pos = writeString(topic, this->buffer, pos);
rc += _client->write(this->buffer,pos);
rc += _client->write(this->buffer, pos);
for (i=0;i<plength;i++) {
rc += _client->write((char)pgm_read_byte_near(payload + i));
}
for (i = 0; i < plength; i++) {
rc += _client->write((char) pgm_read_byte_near(payload + i));
}
lastOutActivity = millis();
lastOutActivity = millis();
expectedLength = 1 + llen + 2 + tlen + plength;
expectedLength = 1 + llen + 2 + tlen + plength;
return (rc == expectedLength);
return (rc == expectedLength);
}
boolean PubSubClient::beginPublish(const char* topic, unsigned int plength, boolean retained) {
if (connected()) {
// Send the header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
length = writeString(topic,this->buffer,length);
uint8_t header = MQTTPUBLISH;
if (retained) {
header |= 1;
}
size_t hlen = buildHeader(header, this->buffer, plength+length-MQTT_MAX_HEADER_SIZE);
uint16_t rc = _client->write(this->buffer+(MQTT_MAX_HEADER_SIZE-hlen),length-(MQTT_MAX_HEADER_SIZE-hlen));
lastOutActivity = millis();
return (rc == (length-(MQTT_MAX_HEADER_SIZE-hlen)));
boolean PubSubClient::beginPublish(const char *topic, unsigned int plength, boolean retained) {
if (connected()) {
// Send the header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
length = writeString(topic, this->buffer, length);
uint8_t header = MQTTPUBLISH;
if (retained) {
header |= 1;
}
return false;
size_t hlen = buildHeader(header, this->buffer, plength + length - MQTT_MAX_HEADER_SIZE);
uint16_t rc = _client->write(this->buffer + (MQTT_MAX_HEADER_SIZE - hlen), length - (MQTT_MAX_HEADER_SIZE - hlen));
lastOutActivity = millis();
return (rc == (length - (MQTT_MAX_HEADER_SIZE - hlen)));
}
return false;
}
int PubSubClient::endPublish() {
return 1;
return 1;
}
size_t PubSubClient::write(uint8_t data) {
lastOutActivity = millis();
return _client->write(data);
lastOutActivity = millis();
return _client->write(data);
}
size_t PubSubClient::write(const uint8_t *buffer, size_t size) {
lastOutActivity = millis();
return _client->write(buffer,size);
}
size_t PubSubClient::buildHeader(uint8_t header, uint8_t* buf, uint16_t length) {
uint8_t lenBuf[4];
uint8_t llen = 0;
uint8_t digit;
uint8_t pos = 0;
uint16_t len = length;
do {
digit = len & 127; //digit = len %128
len >>= 7; //len = len / 128
if (len > 0) {
digit |= 0x80;
}
lenBuf[pos++] = digit;
llen++;
} while(len>0);
buf[4-llen] = header;
for (int i=0;i<llen;i++) {
buf[MQTT_MAX_HEADER_SIZE-llen+i] = lenBuf[i];
lastOutActivity = millis();
return _client->write(buffer, size);
}
size_t PubSubClient::buildHeader(uint8_t header, uint8_t *buf, uint16_t length) {
uint8_t lenBuf[4];
uint8_t llen = 0;
uint8_t digit;
uint8_t pos = 0;
uint16_t len = length;
do {
digit = len & 127; //digit = len %128
len >>= 7; //len = len / 128
if (len > 0) {
digit |= 0x80;
}
return llen+1; // Full header size is variable length bit plus the 1-byte fixed header
lenBuf[pos++] = digit;
llen++;
} while (len > 0);
buf[4 - llen] = header;
for (int i = 0; i < llen; i++) {
buf[MQTT_MAX_HEADER_SIZE - llen + i] = lenBuf[i];
}
return llen + 1; // Full header size is variable length bit plus the 1-byte fixed header
}
boolean PubSubClient::write(uint8_t header, uint8_t* buf, uint16_t length) {
uint16_t rc;
uint8_t hlen = buildHeader(header, buf, length);
boolean PubSubClient::write(uint8_t header, uint8_t *buf, uint16_t length) {
uint16_t rc;
uint8_t hlen = buildHeader(header, buf, length);
#ifdef MQTT_MAX_TRANSFER_SIZE
uint8_t* writeBuf = buf+(MQTT_MAX_HEADER_SIZE-hlen);
......@@ -596,174 +603,173 @@ boolean PubSubClient::write(uint8_t header, uint8_t* buf, uint16_t length) {
}
return result;
#else
rc = _client->write(buf+(MQTT_MAX_HEADER_SIZE-hlen),length+hlen);
lastOutActivity = millis();
return (rc == hlen+length);
rc = _client->write(buf + (MQTT_MAX_HEADER_SIZE - hlen), length + hlen);
lastOutActivity = millis();
return (rc == hlen + length);
#endif
}
boolean PubSubClient::subscribe(const char* topic) {
return subscribe(topic, 0);
boolean PubSubClient::subscribe(const char *topic) {
return subscribe(topic, 0);
}
boolean PubSubClient::subscribe(const char* topic, uint8_t qos) {
size_t topicLength = strnlen(topic, this->bufferSize);
if (topic == 0) {
return false;
}
if (qos > 1) {
return false;
}
if (this->bufferSize < 9 + topicLength) {
// Too long
return false;
}
if (connected()) {
// Leave room in the buffer for header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
nextMsgId++;
if (nextMsgId == 0) {
nextMsgId = 1;
}
this->buffer[length++] = (nextMsgId >> 8);
this->buffer[length++] = (nextMsgId & 0xFF);
length = writeString((char*)topic, this->buffer,length);
this->buffer[length++] = qos;
return write(MQTTSUBSCRIBE|MQTTQOS1,this->buffer,length-MQTT_MAX_HEADER_SIZE);
}
boolean PubSubClient::subscribe(const char *topic, uint8_t qos) {
size_t topicLength = strnlen(topic, this->bufferSize);
if (topic == 0) {
return false;
}
if (qos > 1) {
return false;
}
if (this->bufferSize < 9 + topicLength) {
// Too long
return false;
}
if (connected()) {
// Leave room in the buffer for header and variable length field
uint16_t length = MQTT_MAX_HEADER_SIZE;
nextMsgId++;
if (nextMsgId == 0) {
nextMsgId = 1;
}
this->buffer[length++] = (nextMsgId >> 8);
this->buffer[length++] = (nextMsgId & 0xFF);
length = writeString((char*) topic, this->buffer, length);
this->buffer[length++] = qos;
return write(MQTTSUBSCRIBE | MQTTQOS1, this->buffer, length - MQTT_MAX_HEADER_SIZE);
}
return false;
}
boolean PubSubClient::unsubscribe(const char* topic) {
size_t topicLength = strnlen(topic, this->bufferSize);
if (topic == 0) {
return false;
}
if (this->bufferSize < 9 + topicLength) {
// Too long
return false;
}
if (connected()) {
uint16_t length = MQTT_MAX_HEADER_SIZE;
nextMsgId++;
if (nextMsgId == 0) {
nextMsgId = 1;
}
this->buffer[length++] = (nextMsgId >> 8);
this->buffer[length++] = (nextMsgId & 0xFF);
length = writeString(topic, this->buffer,length);
return write(MQTTUNSUBSCRIBE|MQTTQOS1,this->buffer,length-MQTT_MAX_HEADER_SIZE);
}
boolean PubSubClient::unsubscribe(const char *topic) {
size_t topicLength = strnlen(topic, this->bufferSize);
if (topic == 0) {
return false;
}
if (this->bufferSize < 9 + topicLength) {
// Too long
return false;
}
if (connected()) {
uint16_t length = MQTT_MAX_HEADER_SIZE;
nextMsgId++;
if (nextMsgId == 0) {
nextMsgId = 1;
}
this->buffer[length++] = (nextMsgId >> 8);
this->buffer[length++] = (nextMsgId & 0xFF);
length = writeString(topic, this->buffer, length);
return write(MQTTUNSUBSCRIBE | MQTTQOS1, this->buffer, length - MQTT_MAX_HEADER_SIZE);
}
return false;
}
void PubSubClient::disconnect() {
this->buffer[0] = MQTTDISCONNECT;
this->buffer[1] = 0;
_client->write(this->buffer,2);
_state = MQTT_DISCONNECTED;
_client->flush();
_client->stop();
lastInActivity = lastOutActivity = millis();
}
uint16_t PubSubClient::writeString(const char* string, uint8_t* buf, uint16_t pos) {
const char* idp = string;
uint16_t i = 0;
pos += 2;
while (*idp) {
buf[pos++] = *idp++;
i++;
}
buf[pos-i-2] = (i >> 8);
buf[pos-i-1] = (i & 0xFF);
return pos;
this->buffer[0] = MQTTDISCONNECT;
this->buffer[1] = 0;
_client->write(this->buffer, 2);
_state = MQTT_DISCONNECTED;
_client->flush();
_client->stop();
lastInActivity = lastOutActivity = millis();
}
uint16_t PubSubClient::writeString(const char *string, uint8_t *buf, uint16_t pos) {
const char *idp = string;
uint16_t i = 0;
pos += 2;
while (*idp) {
buf[pos++] = *idp++;
i++;
}
buf[pos - i - 2] = (i >> 8);
buf[pos - i - 1] = (i & 0xFF);
return pos;
}
boolean PubSubClient::connected() {
boolean rc;
if (_client == NULL ) {
rc = false;
boolean rc;
if (_client == NULL) {
rc = false;
} else {
rc = (int) _client->connected();
if (!rc) {
if (this->_state == MQTT_CONNECTED) {
this->_state = MQTT_CONNECTION_LOST;
_client->flush();
_client->stop();
}
} else {
rc = (int)_client->connected();
if (!rc) {
if (this->_state == MQTT_CONNECTED) {
this->_state = MQTT_CONNECTION_LOST;
_client->flush();
_client->stop();
}
} else {
return this->_state == MQTT_CONNECTED;
}
return this->_state == MQTT_CONNECTED;
}
return rc;
}
return rc;
}
PubSubClient& PubSubClient::setServer(uint8_t * ip, uint16_t port) {
IPAddress addr(ip[0],ip[1],ip[2],ip[3]);
return setServer(addr,port);
PubSubClient& PubSubClient::setServer(uint8_t *ip, uint16_t port) {
IPAddress addr(ip[0], ip[1], ip[2], ip[3]);
return setServer(addr, port);
}
PubSubClient& PubSubClient::setServer(IPAddress ip, uint16_t port) {
this->ip = ip;
this->port = port;
this->domain = NULL;
return *this;
this->ip = ip;
this->port = port;
this->domain = NULL;
return *this;
}
PubSubClient& PubSubClient::setServer(const char * domain, uint16_t port) {
this->domain = domain;
this->port = port;
return *this;
PubSubClient& PubSubClient::setServer(const char *domain, uint16_t port) {
this->domain = domain;
this->port = port;
return *this;
}
PubSubClient& PubSubClient::setCallback(MQTT_CALLBACK_SIGNATURE) {
this->callback = callback;
return *this;
this->callback = callback;
return *this;
}
PubSubClient& PubSubClient::setClient(Client& client){
this->_client = &client;
return *this;
PubSubClient& PubSubClient::setClient(Client &client) {
this->_client = &client;
return *this;
}
PubSubClient& PubSubClient::setStream(Stream& stream){
this->stream = &stream;
return *this;
PubSubClient& PubSubClient::setStream(Stream &stream) {
this->stream = &stream;
return *this;
}
int PubSubClient::state() {
return this->_state;
return this->_state;
}
boolean PubSubClient::setBufferSize(uint16_t size) {
if (size == 0) {
// Cannot set it back to 0
return false;
}
if (this->bufferSize == 0) {
this->buffer = (uint8_t*)malloc(size);
if (size == 0) {
// Cannot set it back to 0
return false;
}
if (this->bufferSize == 0) {
this->buffer = (uint8_t*) malloc(size);
} else {
uint8_t *newBuffer = (uint8_t*) realloc(this->buffer, size);
if (newBuffer != NULL) {
this->buffer = newBuffer;
} else {
uint8_t* newBuffer = (uint8_t*)realloc(this->buffer, size);
if (newBuffer != NULL) {
this->buffer = newBuffer;
} else {
return false;
}
return false;
}
this->bufferSize = size;
return (this->buffer != NULL);
}
this->bufferSize = size;
return (this->buffer != NULL);
}
uint16_t PubSubClient::getBufferSize() {
return this->bufferSize;
return this->bufferSize;
}
PubSubClient& PubSubClient::setKeepAlive(uint16_t keepAlive) {
this->keepAlive = keepAlive;
return *this;
this->keepAlive = keepAlive;
return *this;
}
PubSubClient& PubSubClient::setSocketTimeout(uint16_t timeout) {
this->socketTimeout = timeout;
return *this;
this->socketTimeout = timeout;
return *this;
}
......@@ -14,25 +14,34 @@ SCD30 KEYWORD1
SCD30 KEYWORD2
begin KEYWORD2
isConnected KEYWORD2
enableDebugging KEYWORD2
beginMeasuring KEYWORD2
StopMeasurement KEYWORD2
setAmbientPressure KEYWORD2
getSettingValue KEYWORD2
getForcedRecalibration KEYWORD2
getMeasurementInterval KEYWORD2
getTemperatureOffset KEYWORD2
getAltitudeCompensation KEYWORD2
getFirmwareVersion KEYWORD2
getCO2 KEYWORD2
getHumidity KEYWORD2
getTemperature KEYWORD2
getMeasurementInterval KEYWORD2
setMeasurementInterval KEYWORD2
setAmbientPressure KEYWORD2
getAltitudeCompensation KEYWORD2
setAltitudeCompensation KEYWORD2
getAutoSelfCalibration KEYWORD2
setAutoSelfCalibration KEYWORD2
getForcedRecalibration KEYWORD2
setForcedRecalibrationFactor KEYWORD2
getTemperatureOffset KEYWORD2
setTemperatureOffset KEYWORD2
getAutoSelfCalibration KEYWORD2
dataAvailable KEYWORD2
readMeasurement KEYWORD2
reset KEYWORD2
......
name=SparkFun SCD30 Arduino Library
version=1.0.13
version=1.0.17
author=SparkFun Electronics
maintainer=SparkFun Electronics <sparkfun.com>
sentence=Library for the Sensirion SCD30 CO2 Sensor
......
......@@ -7,9 +7,9 @@
Written by Nathan Seidle @ SparkFun Electronics, May 22nd, 2018
Updated February 1st 2021 to include some of the features of paulvha's version of the library
(while maintaining backward-compatibility):
https://github.com/paulvha/scd30
Thank you Paul!
(while maintaining backward-compatibility):
https://github.com/paulvha/scd30
Thank you Paul!
The SCD30 measures CO2 with accuracy of +/- 30ppm.
......@@ -32,14 +32,14 @@ SCD30::SCD30(void)
// Constructor
}
//Initialize the Serial port
// Initialize the Serial port
#ifdef USE_TEENSY3_I2C_LIB
bool SCD30::begin(i2c_t3 &wirePort, bool autoCalibrate, bool measBegin)
#else
bool SCD30::begin(TwoWire &wirePort, bool autoCalibrate, bool measBegin)
#endif
{
_i2cPort = &wirePort; //Grab which port the user wants us to use
_i2cPort = &wirePort; // Grab which port the user wants us to use
/* Especially during obtaining the ACK BIT after a byte sent the SCD30 is using clock stretching (but NOT only there)!
* The need for clock stretching is described in the Sensirion_CO2_Sensors_SCD30_Interface_Description.pdf
......@@ -58,128 +58,153 @@ bool SCD30::begin(TwoWire &wirePort, bool autoCalibrate, bool measBegin)
_i2cPort->setClockStretchLimit(200000);
#endif
uint16_t fwVer;
if (getFirmwareVersion(&fwVer) == false) // Read the firmware version. Return false if the CRC check fails.
if (isConnected() == false)
return (false);
if (_printDebug == true)
{
_debugPort->print(F("SCD30 begin: got firmware version 0x"));
_debugPort->println(fwVer, HEX);
}
if (measBegin == false) // Exit now if measBegin is false
return (true);
//Check for device to respond correctly
if (beginMeasuring() == true) //Start continuous measurements
// Check for device to respond correctly
if (beginMeasuring() == true) // Start continuous measurements
{
setMeasurementInterval(2); //2 seconds between measurements
setAutoSelfCalibration(autoCalibrate); //Enable auto-self-calibration
setMeasurementInterval(2); // 2 seconds between measurements
setAutoSelfCalibration(autoCalibrate); // Enable auto-self-calibration
return (true);
}
return (false); //Something went wrong
return (false); // Something went wrong
}
// Returns true if device responds to a firmware request
bool SCD30::isConnected()
{
uint16_t fwVer;
if (getFirmwareVersion(&fwVer) == false) // Read the firmware version. Return false if the CRC check fails.
return (false);
if (_printDebug == true)
{
_debugPort->print(F("Firmware version 0x"));
_debugPort->println(fwVer, HEX);
}
return (true);
}
//Calling this function with nothing sets the debug port to Serial
//You can also call it with other streams like Serial1, SerialUSB, etc.
// Calling this function with nothing sets the debug port to Serial
// You can also call it with other streams like Serial1, SerialUSB, etc.
void SCD30::enableDebugging(Stream &debugPort)
{
_debugPort = &debugPort;
_printDebug = true;
_debugPort = &debugPort;
_printDebug = true;
}
//Returns the latest available CO2 level
//If the current level has already been reported, trigger a new read
// Returns the latest available CO2 level
// If the current level has already been reported, trigger a new read
uint16_t SCD30::getCO2(void)
{
if (co2HasBeenReported == true) //Trigger a new read
readMeasurement(); //Pull in new co2, humidity, and temp into global vars
if (co2HasBeenReported == true) // Trigger a new read
{
if (readMeasurement() == false) // Pull in new co2, humidity, and temp into global vars
co2 = 0; // Failed to read sensor
}
co2HasBeenReported = true;
return (uint16_t)co2; //Cut off decimal as co2 is 0 to 10,000
return (uint16_t)co2; // Cut off decimal as co2 is 0 to 10,000
}
//Returns the latest available humidity
//If the current level has already been reported, trigger a new read
// Returns the latest available humidity
// If the current level has already been reported, trigger a new read
float SCD30::getHumidity(void)
{
if (humidityHasBeenReported == true) //Trigger a new read
readMeasurement(); //Pull in new co2, humidity, and temp into global vars
if (humidityHasBeenReported == true) // Trigger a new read
if (readMeasurement() == false) // Pull in new co2, humidity, and temp into global vars
humidity = 0; // Failed to read sensor
humidityHasBeenReported = true;
return humidity;
}
//Returns the latest available temperature
//If the current level has already been reported, trigger a new read
// Returns the latest available temperature
// If the current level has already been reported, trigger a new read
float SCD30::getTemperature(void)
{
if (temperatureHasBeenReported == true) //Trigger a new read
readMeasurement(); //Pull in new co2, humidity, and temp into global vars
if (temperatureHasBeenReported == true) // Trigger a new read
if (readMeasurement() == false) // Pull in new co2, humidity, and temp into global vars
temperature = 0; // Failed to read sensor
temperatureHasBeenReported = true;
return temperature;
}
//Enables or disables the ASC
// Enables or disables the ASC
bool SCD30::setAutoSelfCalibration(bool enable)
{
if (enable)
return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 1); //Activate continuous ASC
return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 1); // Activate continuous ASC
else
return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 0); //Deactivate continuous ASC
return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 0); // Deactivate continuous ASC
}
//Set the forced recalibration factor. See 1.3.7.
//The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
// Set the forced recalibration factor. See 1.3.7.
// The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
bool SCD30::setForcedRecalibrationFactor(uint16_t concentration)
{
if (concentration < 400 || concentration > 2000)
{
return false; //Error check.
return false; // Error check.
}
return sendCommand(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, concentration);
}
//Get the temperature offset. See 1.3.8.
// Get the temperature offset. See 1.3.8.
float SCD30::getTemperatureOffset(void)
{
uint16_t response = readRegister(COMMAND_SET_TEMPERATURE_OFFSET);
return (((float)response) / 100.0);
}
//Set the temperature offset. See 1.3.8.
bool SCD30::setTemperatureOffset(float tempOffset)
{
union
{
int16_t signed16;
uint16_t unsigned16;
} signedUnsigned; // Avoid any ambiguity casting int16_t to uint16_t
signedUnsigned.signed16 = tempOffset * 100;
return sendCommand(COMMAND_SET_TEMPERATURE_OFFSET, signedUnsigned.unsigned16);
signedUnsigned.signed16 = response;
return (((float)signedUnsigned.signed16) / 100.0);
}
//Get the altitude compenstation. See 1.3.9.
// Set the temperature offset to remove module heating from temp reading
bool SCD30::setTemperatureOffset(float tempOffset)
{
// Temp offset is only positive. See: https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library/issues/27#issuecomment-971986826
//"The SCD30 offset temperature is obtained by subtracting the reference temperature from the SCD30 output temperature"
// https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Low_Power_Mode.pdf
if (tempOffset < 0.0)
return (false);
uint16_t value = tempOffset * 100;
return sendCommand(COMMAND_SET_TEMPERATURE_OFFSET, value);
}
// Get the altitude compenstation. See 1.3.9.
uint16_t SCD30::getAltitudeCompensation(void)
{
return readRegister(COMMAND_SET_ALTITUDE_COMPENSATION);
}
//Set the altitude compenstation. See 1.3.9.
// Set the altitude compenstation. See 1.3.9.
bool SCD30::setAltitudeCompensation(uint16_t altitude)
{
return sendCommand(COMMAND_SET_ALTITUDE_COMPENSATION, altitude);
}
//Set the pressure compenstation. This is passed during measurement startup.
//mbar can be 700 to 1200
// Set the pressure compenstation. This is passed during measurement startup.
// mbar can be 700 to 1200
bool SCD30::setAmbientPressure(uint16_t pressure_mbar)
{
if (pressure_mbar < 700 || pressure_mbar > 1200)
......@@ -192,33 +217,34 @@ bool SCD30::setAmbientPressure(uint16_t pressure_mbar)
// SCD30 soft reset
void SCD30::reset()
{
sendCommand(COMMAND_RESET);
sendCommand(COMMAND_RESET);
}
// Get the current ASC setting
bool SCD30::getAutoSelfCalibration()
{
uint16_t response = readRegister(COMMAND_AUTOMATIC_SELF_CALIBRATION);
if (response == 1) {
if (response == 1)
{
return true;
}
else {
return false;
else
{
return false;
}
}
//Begins continuous measurements
//Continuous measurement status is saved in non-volatile memory. When the sensor
//is powered down while continuous measurement mode is active SCD30 will measure
//continuously after repowering without sending the measurement command.
//Returns true if successful
// Begins continuous measurements
// Continuous measurement status is saved in non-volatile memory. When the sensor
// is powered down while continuous measurement mode is active SCD30 will measure
// continuously after repowering without sending the measurement command.
// Returns true if successful
bool SCD30::beginMeasuring(uint16_t pressureOffset)
{
return (sendCommand(COMMAND_CONTINUOUS_MEASUREMENT, pressureOffset));
}
//Overload - no pressureOffset
// Overload - no pressureOffset
bool SCD30::beginMeasuring(void)
{
return (beginMeasuring(0));
......@@ -227,17 +253,26 @@ bool SCD30::beginMeasuring(void)
// Stop continuous measurement
bool SCD30::StopMeasurement(void)
{
return(sendCommand(COMMAND_STOP_MEAS));
return (sendCommand(COMMAND_STOP_MEAS));
}
//Sets interval between measurements
//2 seconds to 1800 seconds (30 minutes)
// Sets interval between measurements
// 2 seconds to 1800 seconds (30 minutes)
bool SCD30::setMeasurementInterval(uint16_t interval)
{
return sendCommand(COMMAND_SET_MEASUREMENT_INTERVAL, interval);
}
//Returns true when data is available
// Gets interval between measurements
// 2 seconds to 1800 seconds (30 minutes)
uint16_t SCD30::getMeasurementInterval(void)
{
uint16_t interval = 0;
getSettingValue(COMMAND_SET_MEASUREMENT_INTERVAL, &interval);
return (interval);
}
// Returns true when data is available
bool SCD30::dataAvailable()
{
uint16_t response = readRegister(COMMAND_GET_DATA_READY);
......@@ -247,24 +282,27 @@ bool SCD30::dataAvailable()
return (false);
}
//Get 18 bytes from SCD30
//Updates global variables with floats
//Returns true if success
// Get 18 bytes from SCD30
// Updates global variables with floats
// Returns true if success
bool SCD30::readMeasurement()
{
//Verify we have data from the sensor
// Verify we have data from the sensor
if (dataAvailable() == false)
return (false);
ByteToFl tempCO2; tempCO2.value = 0;
ByteToFl tempHumidity; tempHumidity.value = 0;
ByteToFl tempTemperature; tempTemperature.value = 0;
ByteToFl tempCO2;
tempCO2.value = 0;
ByteToFl tempHumidity;
tempHumidity.value = 0;
ByteToFl tempTemperature;
tempTemperature.value = 0;
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(COMMAND_READ_MEASUREMENT >> 8); //MSB
_i2cPort->write(COMMAND_READ_MEASUREMENT & 0xFF); //LSB
_i2cPort->write(COMMAND_READ_MEASUREMENT >> 8); // MSB
_i2cPort->write(COMMAND_READ_MEASUREMENT & 0xFF); // LSB
if (_i2cPort->endTransmission() != 0)
return (0); //Sensor did not ACK
return (0); // Sensor did not ACK
delay(3);
......@@ -283,25 +321,25 @@ bool SCD30::readMeasurement()
case 1:
case 3:
case 4:
tempCO2.array[x < 3 ? 3-x : 4-x] = incoming;
tempCO2.array[x < 3 ? 3 - x : 4 - x] = incoming;
bytesToCrc[x % 3] = incoming;
break;
case 6:
case 7:
case 9:
case 10:
tempTemperature.array[x < 9 ? 9-x : 10-x] = incoming;
tempTemperature.array[x < 9 ? 9 - x : 10 - x] = incoming;
bytesToCrc[x % 3] = incoming;
break;
case 12:
case 13:
case 15:
case 16:
tempHumidity.array[x < 15 ? 15-x : 16-x] = incoming;
tempHumidity.array[x < 15 ? 15 - x : 16 - x] = incoming;
bytesToCrc[x % 3] = incoming;
break;
default:
//Validate CRC
// Validate CRC
uint8_t foundCrc = computeCRC8(bytesToCrc, 2);
if (foundCrc != incoming)
{
......@@ -337,28 +375,28 @@ bool SCD30::readMeasurement()
_debugPort->println(F("readMeasurement: encountered error reading SCD30 data."));
return false;
}
//Now copy the uint32s into their associated floats
// Now copy the uint32s into their associated floats
co2 = tempCO2.value;
temperature = tempTemperature.value;
humidity = tempHumidity.value;
//Mark our global variables as fresh
// Mark our global variables as fresh
co2HasBeenReported = false;
humidityHasBeenReported = false;
temperatureHasBeenReported = false;
return (true); //Success! New data available in globals.
return (true); // Success! New data available in globals.
}
//Gets a setting by reading the appropriate register.
//Returns true if the CRC is valid.
// Gets a setting by reading the appropriate register.
// Returns true if the CRC is valid.
bool SCD30::getSettingValue(uint16_t registerAddress, uint16_t *val)
{
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(registerAddress >> 8); //MSB
_i2cPort->write(registerAddress & 0xFF); //LSB
_i2cPort->write(registerAddress >> 8); // MSB
_i2cPort->write(registerAddress & 0xFF); // LSB
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
return (false); // Sensor did not ACK
delay(3);
......@@ -384,14 +422,14 @@ bool SCD30::getSettingValue(uint16_t registerAddress, uint16_t *val)
return (false);
}
//Gets two bytes from SCD30
// Gets two bytes from SCD30
uint16_t SCD30::readRegister(uint16_t registerAddress)
{
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(registerAddress >> 8); //MSB
_i2cPort->write(registerAddress & 0xFF); //LSB
_i2cPort->write(registerAddress >> 8); // MSB
_i2cPort->write(registerAddress & 0xFF); // LSB
if (_i2cPort->endTransmission() != 0)
return (0); //Sensor did not ACK
return (0); // Sensor did not ACK
delay(3);
......@@ -402,49 +440,49 @@ uint16_t SCD30::readRegister(uint16_t registerAddress)
uint8_t lsb = _i2cPort->read();
return ((uint16_t)msb << 8 | lsb);
}
return (0); //Sensor did not respond
return (0); // Sensor did not respond
}
//Sends a command along with arguments and CRC
// Sends a command along with arguments and CRC
bool SCD30::sendCommand(uint16_t command, uint16_t arguments)
{
uint8_t data[2];
data[0] = arguments >> 8;
data[1] = arguments & 0xFF;
uint8_t crc = computeCRC8(data, 2); //Calc CRC on the arguments only, not the command
uint8_t crc = computeCRC8(data, 2); // Calc CRC on the arguments only, not the command
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(command >> 8); //MSB
_i2cPort->write(command & 0xFF); //LSB
_i2cPort->write(arguments >> 8); //MSB
_i2cPort->write(arguments & 0xFF); //LSB
_i2cPort->write(command >> 8); // MSB
_i2cPort->write(command & 0xFF); // LSB
_i2cPort->write(arguments >> 8); // MSB
_i2cPort->write(arguments & 0xFF); // LSB
_i2cPort->write(crc);
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
return (false); // Sensor did not ACK
return (true);
}
//Sends just a command, no arguments, no CRC
// Sends just a command, no arguments, no CRC
bool SCD30::sendCommand(uint16_t command)
{
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(command >> 8); //MSB
_i2cPort->write(command & 0xFF); //LSB
_i2cPort->write(command >> 8); // MSB
_i2cPort->write(command & 0xFF); // LSB
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
return (false); // Sensor did not ACK
return (true);
}
//Given an array and a number of bytes, this calculate CRC8 for those bytes
//CRC is only calc'd on the data portion (two bytes) of the four bytes being sent
//From: http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html
//Tested with: http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
//x^8+x^5+x^4+1 = 0x31
// Given an array and a number of bytes, this calculate CRC8 for those bytes
// CRC is only calc'd on the data portion (two bytes) of the four bytes being sent
// From: http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html
// Tested with: http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
// x^8+x^5+x^4+1 = 0x31
uint8_t SCD30::computeCRC8(uint8_t data[], uint8_t len)
{
uint8_t crc = 0xFF; //Init with 0xFF
uint8_t crc = 0xFF; // Init with 0xFF
for (uint8_t x = 0; x < len; x++)
{
......@@ -459,5 +497,5 @@ uint8_t SCD30::computeCRC8(uint8_t data[], uint8_t len)
}
}
return crc; //No output reflection
return crc; // No output reflection
}
......@@ -40,10 +40,10 @@
#include <Wire.h>
#endif
//The default I2C address for the SCD30 is 0x61.
// The default I2C address for the SCD30 is 0x61.
#define SCD30_ADDRESS 0x61
//Available commands
// Available commands
#define COMMAND_CONTINUOUS_MEASUREMENT 0x0010
#define COMMAND_SET_MEASUREMENT_INTERVAL 0x4600
......@@ -70,38 +70,43 @@ public:
bool begin(bool autoCalibrate) { return begin(Wire, autoCalibrate); }
#ifdef USE_TEENSY3_I2C_LIB
bool begin(i2c_t3 &wirePort = Wire, bool autoCalibrate = false, bool measBegin = true); //By default use Wire port
bool begin(i2c_t3 &wirePort = Wire, bool autoCalibrate = false, bool measBegin = true); // By default use Wire port
#else
bool begin(TwoWire &wirePort = Wire, bool autoCalibrate = false, bool measBegin = true); //By default use Wire port
bool begin(TwoWire &wirePort = Wire, bool autoCalibrate = false, bool measBegin = true); // By default use Wire port
#endif
void enableDebugging(Stream &debugPort = Serial); //Turn on debug printing. If user doesn't specify then Serial will be used.
bool isConnected();
void enableDebugging(Stream &debugPort = Serial); // Turn on debug printing. If user doesn't specify then Serial will be used.
bool beginMeasuring(uint16_t pressureOffset);
bool beginMeasuring(void);
bool StopMeasurement(void); // paulvha
// based on paulvha
bool setAmbientPressure(uint16_t pressure_mbar);
bool getSettingValue(uint16_t registerAddress, uint16_t *val);
bool getForcedRecalibration(uint16_t *val) { return (getSettingValue(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, val)); }
bool getMeasurementInterval(uint16_t *val) { return (getSettingValue(COMMAND_SET_MEASUREMENT_INTERVAL, val)); }
bool getTemperatureOffset(uint16_t *val) { return (getSettingValue(COMMAND_SET_TEMPERATURE_OFFSET, val)); }
bool getAltitudeCompensation(uint16_t *val) { return (getSettingValue(COMMAND_SET_ALTITUDE_COMPENSATION, val)); }
bool getFirmwareVersion(uint16_t *val) { return (getSettingValue(COMMAND_READ_FW_VER, val)); }
uint16_t getCO2(void);
float getHumidity(void);
float getTemperature(void);
float getTemperatureOffset(void);
uint16_t getAltitudeCompensation(void);
uint16_t getMeasurementInterval(void);
bool getMeasurementInterval(uint16_t *val) { return (getSettingValue(COMMAND_SET_MEASUREMENT_INTERVAL, val)); }
bool setMeasurementInterval(uint16_t interval);
bool setAmbientPressure(uint16_t pressure_mbar);
uint16_t getAltitudeCompensation(void);
bool getAltitudeCompensation(uint16_t *val) { return (getSettingValue(COMMAND_SET_ALTITUDE_COMPENSATION, val)); }
bool setAltitudeCompensation(uint16_t altitude);
bool getAutoSelfCalibration(void);
bool setAutoSelfCalibration(bool enable);
bool getForcedRecalibration(uint16_t *val) { return (getSettingValue(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, val)); }
bool setForcedRecalibrationFactor(uint16_t concentration);
float getTemperatureOffset(void);
bool getTemperatureOffset(uint16_t *val) { return (getSettingValue(COMMAND_SET_TEMPERATURE_OFFSET, val)); }
bool setTemperatureOffset(float tempOffset);
bool getAutoSelfCalibration(void);
bool dataAvailable();
bool readMeasurement();
......@@ -116,25 +121,25 @@ public:
uint8_t computeCRC8(uint8_t data[], uint8_t len);
private:
//Variables
// Variables
#ifdef USE_TEENSY3_I2C_LIB
i2c_t3 *_i2cPort; //The generic connection to user's chosen I2C hardware
i2c_t3 *_i2cPort; // The generic connection to user's chosen I2C hardware
#else
TwoWire *_i2cPort; //The generic connection to user's chosen I2C hardware
TwoWire *_i2cPort; // The generic connection to user's chosen I2C hardware
#endif
//Global main datums
// Global main datums
float co2 = 0;
float temperature = 0;
float humidity = 0;
//These track the staleness of the current data
//This allows us to avoid calling readMeasurement() every time individual datums are requested
// These track the staleness of the current data
// This allows us to avoid calling readMeasurement() every time individual datums are requested
bool co2HasBeenReported = true;
bool humidityHasBeenReported = true;
bool temperatureHasBeenReported = true;
//Debug
Stream *_debugPort; //The stream to send debug messages to if enabled. Usually Serial.
boolean _printDebug = false; //Flag to print debugging variables
// Debug
Stream *_debugPort; // The stream to send debug messages to if enabled. Usually Serial.
boolean _printDebug = false; // Flag to print debugging variables
};
#endif
#include "util.h"
namespace config {
const char *ntp_server = NTP_SERVER;
const long utc_offset_in_seconds = UTC_OFFSET_IN_SECONDS; // UTC+1
}
#include "sensor_console.h"
#if defined(ESP8266)
# include <ESP8266WiFi.h> // required to get MAC address
const char *current_board = "ESP8266";
# if !defined(AMPEL_WIFI)
void preinit() {
// WiFi would be initialized otherwise (on ESP8266), even if unused.
// see https://github.com/esp8266/Arduino/issues/2111#issuecomment-224251391
ESP8266WiFiClass::preinitWiFiOff();
}
# endif
#elif defined(ESP32)
# include <WiFi.h> // required to get MAC address
const char *current_board = "ESP32";
#else
const char *current_board = "UNKNOWN";
#endif
//NOTE: ESP32 sometimes couldn't access the NTP server, and every loop would take +1000ms
// ifdefs could be used to define functions specific to ESP32, e.g. with configTime
namespace ntp {
WiFiUDP ntpUDP;
NTPClient timeClient(ntpUDP, config::ntp_server, config::utc_offset_in_seconds, 60000UL);
bool connected_at_least_once = false;
void initialize() {
timeClient.begin();
}
void update() {
connected_at_least_once |= timeClient.update();
}
void getLocalTime(char *timestamp) {
timeClient.getFormattedDate(timestamp);
}
void setLocalTime(int32_t unix_seconds) {
char time[23];
timeClient.getFormattedDate(time);
Serial.print(F("Current time : "));
Serial.println(time);
if (connected_at_least_once) {
Serial.println(F("NTP update already happened. Not changing anything."));
return;
}
Serial.print(F("Setting UNIX time to : "));
Serial.println(unix_seconds);
timeClient.setEpochTime(unix_seconds - seconds());
timeClient.getFormattedDate(time);
Serial.print(F("Current time : "));
Serial.println(time);
}
}
void Ampel::showFreeSpace() {
Serial.print(F("Free heap space : "));
Serial.print(ESP.getFreeHeap());
......@@ -90,7 +44,6 @@ char* getSensorId() {
Ampel::Ampel() :
board(current_board), sensorId(getSensorId()), macAddress(getMacString()), max_loop_duration(0) {
sensor_console::defineIntCommand("set_time", ntp::setLocalTime, F("1618829570 (Sets time to the given UNIX time)"));
sensor_console::defineCommand("free", Ampel::showFreeSpace, F("(Displays available heap space)"));
sensor_console::defineCommand("reset", []() {
ESP.restart();
......
#ifndef AMPEL_UTIL_H_INCLUDED
#define AMPEL_UTIL_H_INCLUDED
#include <Arduino.h>
#include "config.h"
#include "sensor_console.h"
#include <WiFiUdp.h> // required for NTP
#include "src/lib/NTPClient-master/NTPClient.h" // NTP
#include <stdint.h> // For uint32_t
#if defined(ESP8266)
# include <ESP8266WiFi.h> // required to get MAC address
# define esp_get_max_free_block_size() ESP.getMaxFreeBlockSize()
# define esp_get_heap_fragmentation() ESP.getHeapFragmentation()
#elif defined(ESP32)
# include <WiFi.h> // required to get MAC address
# define esp_get_max_free_block_size() ESP.getMaxAllocHeap() //largest block of heap that can be allocated.
# define esp_get_heap_fragmentation() "?" // apparently not available for ESP32
#endif
namespace ntp {
void initialize();
void update();
void getLocalTime(char *timestamp);
}
namespace util {
template<typename Tpa, typename Tpb>
inline auto min(const Tpa &a, const Tpb &b) -> decltype(a < b ? a : b) {
......@@ -48,7 +36,4 @@ public:
extern Ampel ampel;
//NOTE: Only use seconds() for duration comparison, not timestamps comparison. Otherwise, problems happen when millis roll over.
#define seconds() (millis() / 1000UL)
#endif
#include "web_server.h"
#if defined(ESP8266)
# include <ESP8266WebServer.h>
#elif defined(ESP32)
# include <WebServer.h>
#endif
#include "config.h"
#include "util.h"
#include "ntp.h"
#include "wifi_util.h"
#include "co2_sensor.h"
#include "sensor_console.h"
#ifdef AMPEL_CSV
# include "csv_writer.h"
#endif
#ifdef AMPEL_MQTT
# include "mqtt.h"
#endif
#ifdef AMPEL_LORAWAN
# include "lorawan.h"
#endif
namespace config {
// Values should be defined in config.h
#ifdef HTTP_USER
......@@ -236,7 +258,7 @@ namespace web_server {
mqtt::connected ? "Yes" : "No", mqtt::last_successful_publish, config::mqtt_sending_interval,
#endif
#if defined(AMPEL_LORAWAN) && defined(ESP32)
lorawan::connected ? "Yes" : "No", LMIC_FREQUENCY_PLAN, lorawan::last_transmission,
lorawan::connected ? "Yes" : "No", config::lorawan_frequency_plan, lorawan::last_transmission,
config::lorawan_sending_interval,
#endif
config::temperature_offset, config::auto_calibrate_sensor ? "Yes" : "No", ampel.sensorId, ampel.sensorId,
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment