An error occurred while loading the file. Please try again.
main.py 7.74 KiB
import librosa.feature
import pandas as pd
import numpy as np
from pathlib import Path
from os import chdir
import os
import csv
from tensorflow import keras
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from keras import models
from keras import layers
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
import constants
import json
from openpyxl import Workbook
import time
def create_csv_header():
    header = 'filename '
    for i in range(constants.MFCC_FEATURE_START, constants.MFCC_FEATURE_END):
        header += f' mfcc{i}'
    header += ' label'
    header = header.split()
    file = open(constants.FEATURES_CSV_NAME, 'w', newline='')
    with file:
        writer = csv.writer(file)
        writer.writerow(header)
def extract_features(trainingDataDir, trainingDataSubDirs):
    create_csv_header()
    # Looping over every file inside the subdirectories for feature extraction
    for trainingDataSubDir in trainingDataSubDirs:
        for fileName in os.listdir(trainingDataDir/f'{trainingDataSubDir}'):
            if fileName.endswith(".wav"):
                audioFile = trainingDataDir/f'{trainingDataSubDir}/{fileName}'
                print("Extracting Features from Directory "+trainingDataSubDir+" and file "+audioFile.name)
                y, sr = librosa.load(audioFile, mono=True)
                mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=(constants.MFCC_FEATURE_END - constants.MFCC_FEATURE_START))
                to_append = f'{audioFile.name}'
                for g in mfcc:
                    to_append += f' {np.mean(g)}'
                if trainingDataSubDir == constants.CAR:
                    to_append += f' {constants.LIGHT_WEIGHT}'
                elif trainingDataSubDir == constants.BUS:
                    to_append += f' {constants.MEDIUM_WEIGHT}'
                elif trainingDataSubDir == constants.TRUCK:
                    to_append += f' {constants.HEAVY_WEIGHT}'
                elif trainingDataSubDir == constants.MOTORCYCLE:
                    to_append += f' {constants.TWO_WHEELED}'
                elif trainingDataSubDir == constants.TRAM:
                    to_append += f' {constants.RAIL_BOUND}'
                file = open(constants.FEATURES_CSV_NAME, 'a', newline='')
                with file:
                    writer = csv.writer(file)
                    writer.writerow(to_append.split())
def preprocessing_csv_data():
    print("Reading Features... ")
    data = pd.read_csv(constants.FEATURES_CSV_NAME)
    # Dropping unnecessary columns (Column Filename is dropped)
    data = data.drop(['filename'], axis=1)
    return data
def encode_labels(data): # Extracting classes/label column as y from csv and converting string labels to numbers using LabelEncoder audio_list = data.iloc[:, -1] encoder = LabelEncoder() target_labels = encoder.fit_transform(audio_list) return target_labels, encoder def normalize_data(data): # normalizing - Extracting Remaining Columns as X and normalizing them to a common scale scaler = StandardScaler() X = scaler.fit_transform(np.array(data.iloc[:, :-1], dtype=float)) return X def train_test_data_split(X, y): # splitting of dataset into train and test dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) return X_train, X_test, y_train, y_test def create_and_compile_model(X, hidden_layer_dimensions): print("Creating a Model") # creating a model model = models.Sequential() for i, layer_dimension in enumerate(hidden_layer_dimensions): if i == 0: model.add(layers.Dense(layer_dimension, activation=constants.ACTIVATION_RELU, input_shape=(X.shape[1],))) else: model.add(layers.Dense(layer_dimension, activation=constants.ACTIVATION_RELU)) model.add(layers.Dense(constants.OUTPUT_LAYER_DIMENSIONS, activation=constants.ACTIVATION_SOFTMAX)) print("Compiling a Model") model.compile(optimizer= constants.OPTIMIZER_ADAM, loss= constants.LOSS_FUNCTION_SPARSE, metrics=[constants.ACCURACY_METRICS]) return model def train_and_save_model(model, X_train, y_train, X_test, y_test): #logdir = constants.LOG_DIR_PATH #tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) print("Start Training...") #history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test), callbacks=[tensorboard_callback]) history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test)) # Saving the trained model to avoid re-training #model.save(constants.TRAINED_MODEL) return history def model_predict(model, X_test, y_test): test_loss, test_acc = model.evaluate(X_test, y_test) print('test_acc: ', test_acc) y_predicted = np.argmax(model.predict(X_test), axis=-1) accuracy = np.mean(y_test == y_predicted) print(accuracy) return accuracy def predict(model, X_test, y_test): print("Predictions.....") predictions = np.argmax(model.predict(X_test), axis=-1) target_names = [constants.LIGHT_WEIGHT, constants.MEDIUM_WEIGHT, constants.HEAVY_WEIGHT,constants.TWO_WHEELED, constants.RAIL_BOUND] print(classification_report(y_test, predictions, target_names=target_names)) def plot_model_accuracy(history): # Plot graph Model Accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy')
plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() def plot_model_loss(history): # Plot graph Model Loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() def construct_and_apply_network(hidden_layer_dimensions, data, target_labels, encoder, X): X_train, X_test, y_train, y_test = train_test_data_split(X, target_labels) model = create_and_compile_model(X, hidden_layer_dimensions) history = train_and_save_model(model, X_train, y_train, X_test, y_test) predict(model, X_test, y_test) accuracy = model_predict(model, X_test, y_test) #plot_model_accuracy(history) #plot_model_loss(history) return accuracy if __name__ == "__main__": # Changing Directory to Training Dataset Folder chdir(constants.TRAINING_DATA_DIRECTORY_NAME) trainingDataDir = Path.cwd() trainingDataSubDirs = os.listdir(trainingDataDir) chdir("..") if os.path.isfile(constants.FEATURES_CSV_NAME): print("already exists") else: extract_features(trainingDataDir, trainingDataSubDirs) data = preprocessing_csv_data() target_labels, encoder = encode_labels(data) X = normalize_data(data) neurons_increment_by = 8 start_neuron_value = 8 max_neuron_value = 32 hidden_layers = 3 hidden_layer_dimensions = [] book = Workbook() sheet = book.active # loop_count = int((max_neuron_value / neurons_increment_by) * 4) row_counter = 0 for i in range(hidden_layers): hidden_layer_dimensions.append(0) for j in range(start_neuron_value, (max_neuron_value + 1), neurons_increment_by): row_counter += 1 hidden_layer_dimensions[i] = j start = time.time() new_accuracy = construct_and_apply_network(hidden_layer_dimensions, data, target_labels, encoder, X) end = time.time() elapsed_time = end - start sheet.cell(row=(row_counter), column=1).value = hidden_layer_dimensions.__str__() sheet.cell(row=(row_counter), column=2).value = new_accuracy sheet.cell(row=(row_counter), column=3).value = elapsed_time book.save("sample.xlsx")