Commit d6a7ac34 authored by Bao's avatar Bao
Browse files

Update Biomass.html

parent f8ccef57
Pipeline #1682 passed with stage
in 2 seconds
......@@ -44,16 +44,17 @@
<h1>Biomass Simulator</h1>
<p>by Keyu Bao</p>
<p>SimStadt is an urban simulation tool in development during various research projects since 2015. Up to now the potential of photovoltaic, solar thermal energy and building heating demands can be assessed at the level of individual buildings. SimStadt uses the City Geography Mark-up Language (CityGML), which describes 3D urban building models.</p>
<p>Work has been conducted to extend SimStadt tool with a new FWE assessment extension. So far, the extensive analysis of biomass potential has been realized. The extension takes the integration map between CityGML and satellite crop distribution map , which allows the workflow to assess the local biomass potential with high resolution and reliability instead of using general statistic data. </p>
<p>This biomass assessment workflow gives the primary energy potential as well as the secondary technical potential, e.g. energy wood, biogas, bio ethanol, residue, etc. User is allowed to give parameters relating to specific energy scenarios, e.g. the ratio for energy production from crop, the ratio of harvesting forest and etc. The workflow only consider the energy potential directly from vegetation rather from animal products.</p>
<span class="center"><img src="img/Energy_Flow.jpg" alt="energy flow" /></span>
<p>The interface of the biomass potential assessment workflow in the simulation platform SimStadt is shown below. User can change relocate the root folder of simulation through A. In the root folder, several project can be stored and selected through B. Available CityGML format input in the chosen project is shown in E. Different function can be chosen through C, including heating/electricity demand calculation with refurbishment scenarios, PV potential analysis, district heating network calculatoin and etc. </p>
<span class="center"><img src="img/WF1.png" alt="work flow 1" width="90%" height="90%" /></span>
<p>Like other workflows in SimStadt, biomass workflow extension is made of several steps. Some parameters from steps can be modified according to the need of user and scenarios. In this worklfow, energy crop rate, forest harvesting rate and etc. can be changed (A,B). Moreover, an external XML configuration file is imported with the information of the secondary energy use distribution of each crop type (C).</p>
<span class="center"><img src="img/WF2.png" alt="work flow 2" width="90%" height="90%" /></span>
<p>The output of the workflow is a CSV file, including GML ID, area, crop type, usage type, primary energy potential, secondary energy potential (energy wood, biogas, bioethanol, vegetable oil, solid fuel, residue by product), end energy potential by typical CHPs (electricity and heat).</p>
<p>The biomass primary energy density map of scenario 2 for Ludwigsburg country, shown below, shows the theoretical biomass potential per polygon from the DLM model, using a statistical distribution of agricultural crops. The biomass potentials of the polygons are not continuous but discrete as groups, since potential is based on the types of crops on the polygons. Vineyard and fruit plantation, shown in red, have the lowest potential density as only residue by-products are utilized as energy source. The grove and agriculture area are mostly yellow and green indicating the middle value of potential since only 14% of the production of the polygons are energy crop under this scenario. The potential of forest is relatively higher than the potential of agricultural land. Thus, the north, east and south corners of territory, where the forest and shrub are, has higher biomass potential density. Urban areas, railway and streets are shown in white, assuming no relevant amounts of biomass potential. </p>
<span class="center"><img src="img/Density_Map.jpg" alt="density map" width="90%" height="90%" /></span>
<p>Work has been conducted to extend SimStadt tool with a new FWE assessment extension. This work introduces a new workflow, which evaluates regional bioenergy potentials and its impact on water demand based on geographical information system (GIS)-based land use data, satellite maps on local crop types and soil types, and conversion factors from biomass to bioenergy. The actual annual biomass yield of crops is assessed through an automated process considering the factors of local climate, crop type, soil, and irrigation. The crop biomass yields are validated with historic statistical data, with deviation less than 7% in most cases. Additionally, the resulting bioenergy potentials yield between 10.7 and 12.0 GWh/ha compared with 13.3 GWh/ha from other studies. </p>
<p>Set of input and resulting maps for Marbach, Ludwigsburg county, Baden-Württemberg, is shown below. (a) Digital landscape model (DLM) map in polygons with land use; (b) satellite map in raster with crop type; (c) soil map; and (d) overlay of (a) and (b).</p>
<span class="center"><img src= alt="energy flow" /></span>
<p>For the newly established workflow on regional bioenergy potentials, most of the predefined modules are not applicable due to the fact that the input data is land use polygons instead of building geometries, the exception being the import module that can read CityGML files regardless of the type of objects (building or land use polygon) and the weather model that imports the meteorological data in TMY3 format generated by Meteonorm for the specific region in hourly or monthly resolution. The meteorological data are stored in SimStadt and can be called in later steps. </p>
<p>To model bioenergy potentials more accurately than by using static values for all crops, a new module “YieldGenerator” was developed. Another module, “BiomassProcessor” then processes all land use polygons. Users can modify parameters, such as the annual forest wood energetic use rate, the share of energy crops such as corn and rapeseed that are actually used for energetic purposes, or the grass land energy usage rate. Further input parameters can also be imported from an XML configuration file step. The module analyses each land field polygon, tagged with a certain type of vegetation and soil. Therefore, the module was able to find the corresponding biomass yield of the crop on the soil, the possible bioenergy usages and bioenergy conversion coefficient from the XML configuration file. It then calculated the corresponding technical bioenergy energy potential, with the output being exported to a CSV file.</p>
<span class="center"><img src= alt="work flow 1" width="90%" height="90%" /></span>
<p>In Fig. 4, a small area of county Ludwigsburg, Marbach, was visualized with 3D buildings and satellite map. The red area represents area with very long biomass density, either with buildings, roads or water bodies. Each polygon has homogeneous density over all area because a polygon is assumed to be covered by one type of crop. Except for red build-up area, road and river, the only vegetation cover land type is farming land in this map. Different colours represent different biomass potential brought by different crop types.</p>
<span class="center"><img src="img/biomass_marbarch.jpg" alt="work flow 2" width="90%" height="90%" /></span>
<p>The detailed descripotion and findings of this workflow can be find in the following two open-sourced papers, which are funded by IN-Source project.</p>
<p>Bao, K.; Padsala, R.; Coors, V.; Thrän, D.; Schröter, B. A Method for Assessing Regional Bioenergy Potentials Based on GIS Data and a Dynamic Yield Simulation Model. Energies 2020, 13, 6488. DOI:</p>
<p>Bao K, Padsala R, Coors V, Thrän D, Schröter B (2020): GIS-Based Assessment of Regional Biomass Potentials at the Example of Two Counties in Germany. In European Biomass Conference and Exhibition Proceedings, pp. 77–85. DOI: 10.5071/28thEUBCE2020-1CV.4.15.</p>
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment