SparkFun_SCD30_Arduino_Library.cpp 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
/*
  This is a library written for the SCD30
  SparkFun sells these at its website: www.sparkfun.com
  Do you like this library? Help support SparkFun. Buy a board!
  https://www.sparkfun.com/products/14751

  Written by Nathan Seidle @ SparkFun Electronics, May 22nd, 2018

9
10
11
12
13
  Updated February 1st 2021 to include some of the features of paulvha's version of the library
	(while maintaining backward-compatibility):
	https://github.com/paulvha/scd30
	Thank you Paul!

14
15
16
17
18
19
20
21
  The SCD30 measures CO2 with accuracy of +/- 30ppm.

  This library handles the initialization of the SCD30 and outputs
  CO2 levels, relative humidty, and temperature.

  https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library

  Development environment specifics:
22
  Arduino IDE 1.8.13
23

24
25
  SparkFun code, firmware, and software is released under the MIT License.
  Please see LICENSE.md for more details.
26
27
28
29
30
31
32
33
34
35
*/

#include "SparkFun_SCD30_Arduino_Library.h"

SCD30::SCD30(void)
{
  // Constructor
}

//Initialize the Serial port
36
37
38
39
40
#ifdef USE_TEENSY3_I2C_LIB
bool SCD30::begin(i2c_t3 &wirePort, bool autoCalibrate, bool measBegin)
#else
bool SCD30::begin(TwoWire &wirePort, bool autoCalibrate, bool measBegin)
#endif
41
42
43
44
45
46
47
48
49
50
51
52
{
  _i2cPort = &wirePort; //Grab which port the user wants us to use

  /* Especially during obtaining the ACK BIT after a byte sent the SCD30 is using clock stretching  (but NOT only there)!
   * The need for clock stretching is described in the Sensirion_CO2_Sensors_SCD30_Interface_Description.pdf
   *
   * The default clock stretch (maximum wait time) on the ESP8266-library (2.4.2) is 230us which is set during _i2cPort->begin();
   * In the current implementation of the ESP8266 I2C driver there is NO error message when this time expired, while
   * the clock stretch is still happening, causing uncontrolled behaviour of the hardware combination.
   *
   * To set ClockStretchlimit() a check for ESP8266 boards has been added in the driver.
   *
53
   * With setting to 20000, we set a max timeout of 20mS (> 20x the maximum measured) basically disabling the time-out
54
55
56
57
58
59
60
   * and now wait for clock stretch to be controlled by the client.
   */

#if defined(ARDUINO_ARCH_ESP8266)
  _i2cPort->setClockStretchLimit(200000);
#endif

61
62
63
64
65
66
67
68
69
70
71
72
73
  uint16_t fwVer;
  if (getFirmwareVersion(&fwVer) == false) // Read the firmware version. Return false if the CRC check fails.
    return (false);

  if (_printDebug == true)
  {
    _debugPort->print(F("SCD30 begin: got firmware version 0x"));
    _debugPort->println(fwVer, HEX);
  }

  if (measBegin == false) // Exit now if measBegin is false
    return (true);

74
75
76
77
78
79
80
81
82
83
84
85
  //Check for device to respond correctly
  if (beginMeasuring() == true) //Start continuous measurements
  {
    setMeasurementInterval(2);    //2 seconds between measurements
    setAutoSelfCalibration(autoCalibrate); //Enable auto-self-calibration

    return (true);
  }

  return (false); //Something went wrong
}

86
87
88
89
90
91
92
93
//Calling this function with nothing sets the debug port to Serial
//You can also call it with other streams like Serial1, SerialUSB, etc.
void SCD30::enableDebugging(Stream &debugPort)
{
	_debugPort = &debugPort;
	_printDebug = true;
}

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//Returns the latest available CO2 level
//If the current level has already been reported, trigger a new read
uint16_t SCD30::getCO2(void)
{
  if (co2HasBeenReported == true) //Trigger a new read
    readMeasurement();            //Pull in new co2, humidity, and temp into global vars

  co2HasBeenReported = true;

  return (uint16_t)co2; //Cut off decimal as co2 is 0 to 10,000
}

//Returns the latest available humidity
//If the current level has already been reported, trigger a new read
float SCD30::getHumidity(void)
{
  if (humidityHasBeenReported == true) //Trigger a new read
    readMeasurement();                 //Pull in new co2, humidity, and temp into global vars

  humidityHasBeenReported = true;

  return humidity;
}

//Returns the latest available temperature
//If the current level has already been reported, trigger a new read
float SCD30::getTemperature(void)
{
  if (temperatureHasBeenReported == true) //Trigger a new read
    readMeasurement();                    //Pull in new co2, humidity, and temp into global vars

  temperatureHasBeenReported = true;

  return temperature;
}

//Enables or disables the ASC
bool SCD30::setAutoSelfCalibration(bool enable)
{
  if (enable)
    return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 1); //Activate continuous ASC
  else
    return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 0); //Deactivate continuous ASC
}

//Set the forced recalibration factor. See 1.3.7.
//The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
bool SCD30::setForcedRecalibrationFactor(uint16_t concentration)
{
  if (concentration < 400 || concentration > 2000)
  {
    return false; //Error check.
  }
  return sendCommand(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, concentration);
}

//Get the temperature offset. See 1.3.8.
151
float SCD30::getTemperatureOffset(void)
152
153
{
  uint16_t response = readRegister(COMMAND_SET_TEMPERATURE_OFFSET);
154
  return (((float)response) / 100.0);
155
156
157
158
159
}

//Set the temperature offset. See 1.3.8.
bool SCD30::setTemperatureOffset(float tempOffset)
{
160
161
162
163
164
165
166
167
168
169
170
171
172
  union
  {
    int16_t signed16;
    uint16_t unsigned16;
  } signedUnsigned; // Avoid any ambiguity casting int16_t to uint16_t
  signedUnsigned.signed16 = tempOffset * 100;
  return sendCommand(COMMAND_SET_TEMPERATURE_OFFSET, signedUnsigned.unsigned16);
}

//Get the altitude compenstation. See 1.3.9.
uint16_t SCD30::getAltitudeCompensation(void)
{
  return readRegister(COMMAND_SET_ALTITUDE_COMPENSATION);
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
}

//Set the altitude compenstation. See 1.3.9.
bool SCD30::setAltitudeCompensation(uint16_t altitude)
{
  return sendCommand(COMMAND_SET_ALTITUDE_COMPENSATION, altitude);
}

//Set the pressure compenstation. This is passed during measurement startup.
//mbar can be 700 to 1200
bool SCD30::setAmbientPressure(uint16_t pressure_mbar)
{
  if (pressure_mbar < 700 || pressure_mbar > 1200)
  {
    return false;
  }
  return sendCommand(COMMAND_CONTINUOUS_MEASUREMENT, pressure_mbar);
}

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// SCD30 soft reset
void SCD30::reset()
{
	sendCommand(COMMAND_RESET);

}

// Get the current ASC setting
bool SCD30::getAutoSelfCalibration()
{
  uint16_t response = readRegister(COMMAND_AUTOMATIC_SELF_CALIBRATION);
  if (response == 1) {
    return true;
  }
  else {
	return false;
  }
}

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//Begins continuous measurements
//Continuous measurement status is saved in non-volatile memory. When the sensor
//is powered down while continuous measurement mode is active SCD30 will measure
//continuously after repowering without sending the measurement command.
//Returns true if successful
bool SCD30::beginMeasuring(uint16_t pressureOffset)
{
  return (sendCommand(COMMAND_CONTINUOUS_MEASUREMENT, pressureOffset));
}

//Overload - no pressureOffset
bool SCD30::beginMeasuring(void)
{
  return (beginMeasuring(0));
}

227
228
229
230
231
232
// Stop continuous measurement
bool SCD30::StopMeasurement(void)
{
  return(sendCommand(COMMAND_STOP_MEAS));
}

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//Sets interval between measurements
//2 seconds to 1800 seconds (30 minutes)
bool SCD30::setMeasurementInterval(uint16_t interval)
{
  return sendCommand(COMMAND_SET_MEASUREMENT_INTERVAL, interval);
}

//Returns true when data is available
bool SCD30::dataAvailable()
{
  uint16_t response = readRegister(COMMAND_GET_DATA_READY);

  if (response == 1)
    return (true);
  return (false);
}

//Get 18 bytes from SCD30
//Updates global variables with floats
//Returns true if success
bool SCD30::readMeasurement()
{
  //Verify we have data from the sensor
  if (dataAvailable() == false)
    return (false);

259
260
261
  ByteToFl tempCO2; tempCO2.value = 0;
  ByteToFl tempHumidity; tempHumidity.value = 0;
  ByteToFl tempTemperature; tempTemperature.value = 0;
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

  _i2cPort->beginTransmission(SCD30_ADDRESS);
  _i2cPort->write(COMMAND_READ_MEASUREMENT >> 8);   //MSB
  _i2cPort->write(COMMAND_READ_MEASUREMENT & 0xFF); //LSB
  if (_i2cPort->endTransmission() != 0)
    return (0); //Sensor did not ACK

  const uint8_t receivedBytes = _i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)18);
  bool error = false;
  if (_i2cPort->available())
  {
    byte bytesToCrc[2];
    for (byte x = 0; x < 18; x++)
    {
      byte incoming = _i2cPort->read();

      switch (x)
      {
      case 0:
      case 1:
      case 3:
      case 4:
284
        tempCO2.array[x < 3 ? 3-x : 4-x] = incoming;
285
286
287
288
289
290
        bytesToCrc[x % 3] = incoming;
        break;
      case 6:
      case 7:
      case 9:
      case 10:
291
        tempTemperature.array[x < 9 ? 9-x : 10-x] = incoming;
292
293
294
295
296
297
        bytesToCrc[x % 3] = incoming;
        break;
      case 12:
      case 13:
      case 15:
      case 16:
298
        tempHumidity.array[x < 15 ? 15-x : 16-x] = incoming;
299
300
301
302
        bytesToCrc[x % 3] = incoming;
        break;
      default:
        //Validate CRC
303
        uint8_t foundCrc = computeCRC8(bytesToCrc, 2);
304
305
        if (foundCrc != incoming)
        {
306
307
308
309
310
311
312
313
314
          if (_printDebug == true)
          {
            _debugPort->print(F("readMeasurement: found CRC in byte "));
            _debugPort->print(x);
            _debugPort->print(F(", expected 0x"));
            _debugPort->print(foundCrc, HEX);
            _debugPort->print(F(", got 0x"));
            _debugPort->println(incoming, HEX);
          }
315
316
317
318
319
320
321
322
          error = true;
        }
        break;
      }
    }
  }
  else
  {
323
324
325
326
327
328
    if (_printDebug == true)
    {
      _debugPort->print(F("readMeasurement: no SCD30 data found from I2C, i2c claims we should receive "));
      _debugPort->print(receivedBytes);
      _debugPort->println(F(" bytes"));
    }
329
330
331
332
333
    return false;
  }

  if (error)
  {
334
335
    if (_printDebug == true)
      _debugPort->println(F("readMeasurement: encountered error reading SCD30 data."));
336
337
338
    return false;
  }
  //Now copy the uint32s into their associated floats
339
340
341
  co2 = tempCO2.value;
  temperature = tempTemperature.value;
  humidity = tempHumidity.value;
342
343
344
345
346
347
348
349
350

  //Mark our global variables as fresh
  co2HasBeenReported = false;
  humidityHasBeenReported = false;
  temperatureHasBeenReported = false;

  return (true); //Success! New data available in globals.
}

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//Gets a setting by reading the appropriate register.
//Returns true if the CRC is valid.
bool SCD30::getSettingValue(uint16_t registerAddress, uint16_t *val)
{
  _i2cPort->beginTransmission(SCD30_ADDRESS);
  _i2cPort->write(registerAddress >> 8);   //MSB
  _i2cPort->write(registerAddress & 0xFF); //LSB
  if (_i2cPort->endTransmission() != 0)
    return (false); //Sensor did not ACK

  _i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)3); // Request data and CRC
  if (_i2cPort->available())
  {
    uint8_t data[2];
    data[0] = _i2cPort->read();
    data[1] = _i2cPort->read();
    uint8_t crc = _i2cPort->read();
    *val = (uint16_t)data[0] << 8 | data[1];
    uint8_t expectedCRC = computeCRC8(data, 2);
    if (crc == expectedCRC) // Return true if CRC check is OK
      return (true);
    if (_printDebug == true)
    {
      _debugPort->print(F("getSettingValue: CRC fail: expected 0x"));
      _debugPort->print(expectedCRC, HEX);
      _debugPort->print(F(", got 0x"));
      _debugPort->println(crc, HEX);
    }
  }
  return (false);
}

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//Gets two bytes from SCD30
uint16_t SCD30::readRegister(uint16_t registerAddress)
{
  _i2cPort->beginTransmission(SCD30_ADDRESS);
  _i2cPort->write(registerAddress >> 8);   //MSB
  _i2cPort->write(registerAddress & 0xFF); //LSB
  if (_i2cPort->endTransmission() != 0)
    return (0); //Sensor did not ACK

  _i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)2);
  if (_i2cPort->available())
  {
    uint8_t msb = _i2cPort->read();
    uint8_t lsb = _i2cPort->read();
    return ((uint16_t)msb << 8 | lsb);
  }
  return (0); //Sensor did not respond
}

//Sends a command along with arguments and CRC
bool SCD30::sendCommand(uint16_t command, uint16_t arguments)
{
  uint8_t data[2];
  data[0] = arguments >> 8;
  data[1] = arguments & 0xFF;
  uint8_t crc = computeCRC8(data, 2); //Calc CRC on the arguments only, not the command

  _i2cPort->beginTransmission(SCD30_ADDRESS);
  _i2cPort->write(command >> 8);     //MSB
  _i2cPort->write(command & 0xFF);   //LSB
  _i2cPort->write(arguments >> 8);   //MSB
  _i2cPort->write(arguments & 0xFF); //LSB
  _i2cPort->write(crc);
  if (_i2cPort->endTransmission() != 0)
    return (false); //Sensor did not ACK

  return (true);
}

//Sends just a command, no arguments, no CRC
bool SCD30::sendCommand(uint16_t command)
{
  _i2cPort->beginTransmission(SCD30_ADDRESS);
  _i2cPort->write(command >> 8);   //MSB
  _i2cPort->write(command & 0xFF); //LSB
  if (_i2cPort->endTransmission() != 0)
    return (false); //Sensor did not ACK

  return (true);
}

//Given an array and a number of bytes, this calculate CRC8 for those bytes
//CRC is only calc'd on the data portion (two bytes) of the four bytes being sent
//From: http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html
//Tested with: http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
//x^8+x^5+x^4+1 = 0x31
uint8_t SCD30::computeCRC8(uint8_t data[], uint8_t len)
{
  uint8_t crc = 0xFF; //Init with 0xFF

  for (uint8_t x = 0; x < len; x++)
  {
    crc ^= data[x]; // XOR-in the next input byte

    for (uint8_t i = 0; i < 8; i++)
    {
      if ((crc & 0x80) != 0)
        crc = (uint8_t)((crc << 1) ^ 0x31);
      else
        crc <<= 1;
    }
  }

  return crc; //No output reflection
}