SoftwareSerial.cpp 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*

SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32.
Copyright (c) 2015-2016 Peter Lerup. All rights reserved.
Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/

#include "SoftwareSerial.h"
#include <Arduino.h>

#ifndef ESP32
uint32_t SoftwareSerial::m_savedPS = 0;
#else
portMUX_TYPE SoftwareSerial::m_interruptsMux = portMUX_INITIALIZER_UNLOCKED;
#endif

inline void IRAM_ATTR SoftwareSerial::disableInterrupts()
{
#ifndef ESP32
    m_savedPS = xt_rsil(15);
#else
    taskENTER_CRITICAL(&m_interruptsMux);
#endif
}

inline void IRAM_ATTR SoftwareSerial::restoreInterrupts()
{
#ifndef ESP32
    xt_wsr_ps(m_savedPS);
#else
    taskEXIT_CRITICAL(&m_interruptsMux);
#endif
}

constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast<uint8_t>(0);

SoftwareSerial::SoftwareSerial() {
    m_isrOverflow = false;
    m_rxGPIOPullupEnabled = true;
}

SoftwareSerial::SoftwareSerial(int8_t rxPin, int8_t txPin, bool invert)
{
    m_isrOverflow = false;
    m_rxGPIOPullupEnabled = true;
    m_rxPin = rxPin;
    m_txPin = txPin;
    m_invert = invert;
}

SoftwareSerial::~SoftwareSerial() {
    end();
}

bool SoftwareSerial::isValidGPIOpin(int8_t pin) {
#if defined(ESP8266)
    return (pin >= 0 && pin <= 16) && !isFlashInterfacePin(pin);
#elif defined(ESP32)
    // Remove the strapping pins as defined in the datasheets, they affect bootup and other critical operations
    // Remmove the flash memory pins on related devices, since using these causes memory access issues.
#ifdef CONFIG_IDF_TARGET_ESP32
    // Datasheet https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf,
    // Pinout    https://docs.espressif.com/projects/esp-idf/en/latest/esp32/_images/esp32-devkitC-v4-pinout.jpg    
    return (pin == 1) || (pin >= 3 && pin <= 5) ||
        (pin >= 12 && pin <= 15) ||
        (!psramFound() && pin >= 16 && pin <= 17) ||
        (pin >= 18 && pin <= 19) ||
        (pin >= 21 && pin <= 23) || (pin >= 25 && pin <= 27) || (pin >= 32 && pin <= 39);
#elif CONFIG_IDF_TARGET_ESP32S2
    // Datasheet https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf,
    // Pinout    https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/_images/esp32-s2_saola1-pinout.jpg
    return (pin >= 1 && pin <= 21) || (pin >= 33 && pin <= 44);
#elif CONFIG_IDF_TARGET_ESP32C3
    // Datasheet https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf, 
    // Pinout    https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/_images/esp32-c3-devkitm-1-v1-pinout.jpg
    return (pin >= 0 && pin <= 1) || (pin >= 3 && pin <= 7) || (pin >= 18 && pin <= 21);
#else 
    return true;
#endif
#else
    return true;
#endif
}

bool SoftwareSerial::isValidRxGPIOpin(int8_t pin) {
    return isValidGPIOpin(pin)
#if defined(ESP8266)
        && (pin != 16)
#endif
        ;
}

bool SoftwareSerial::isValidTxGPIOpin(int8_t pin) {
    return isValidGPIOpin(pin)
#if defined(ESP32)
#ifdef CONFIG_IDF_TARGET_ESP32
        && (pin < 34)
#elif CONFIG_IDF_TARGET_ESP32S2
        && (pin <= 45)
#elif CONFIG_IDF_TARGET_ESP32C3
        // no restrictions
#endif
#endif
        ;
}

bool SoftwareSerial::hasRxGPIOPullUp(int8_t pin) {
#if defined(ESP32)
    return !(pin >= 34 && pin <= 39);
#else
    (void)pin;
    return true;
#endif
}

void SoftwareSerial::setRxGPIOPullUp() {
    if (m_rxValid) {
        pinMode(m_rxPin, hasRxGPIOPullUp(m_rxPin) && m_rxGPIOPullupEnabled ? INPUT_PULLUP : INPUT);
    }
}

void SoftwareSerial::begin(uint32_t baud, SoftwareSerialConfig config,
    int8_t rxPin, int8_t txPin,
    bool invert, int bufCapacity, int isrBufCapacity) {
    if (-1 != rxPin) m_rxPin = rxPin;
    if (-1 != txPin) m_txPin = txPin;
    m_oneWire = (m_rxPin == m_txPin);
    m_invert = invert;
    m_dataBits = 5 + (config & 07);
    m_parityMode = static_cast<SoftwareSerialParity>(config & 070);
    m_stopBits = 1 + ((config & 0300) ? 1 : 0);
    m_pduBits = m_dataBits + static_cast<bool>(m_parityMode) + m_stopBits;
    m_bitCycles = (ESP.getCpuFreqMHz() * 1000000UL + baud / 2) / baud;
    m_intTxEnabled = true;
    if (isValidRxGPIOpin(m_rxPin)) {
        m_buffer.reset(new circular_queue<uint8_t>((bufCapacity > 0) ? bufCapacity : 64));
        if (m_parityMode)
        {
            m_parityBuffer.reset(new circular_queue<uint8_t>((m_buffer->capacity() + 7) / 8));
            m_parityInPos = m_parityOutPos = 1;
        }
        m_isrBuffer.reset(new circular_queue<uint32_t, SoftwareSerial*>((isrBufCapacity > 0) ?
            isrBufCapacity : m_buffer->capacity() * (2 + m_dataBits + static_cast<bool>(m_parityMode))));
        if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) {
            m_rxValid = true;
            setRxGPIOPullUp();
        }
    }
    if (isValidTxGPIOpin(m_txPin)) {
        m_txValid = true;
        if (!m_oneWire) {
            pinMode(m_txPin, OUTPUT);
            digitalWrite(m_txPin, !m_invert);
        }
    }
    if (!m_rxEnabled) { enableRx(true); }
}

void SoftwareSerial::end()
{
    enableRx(false);
    m_txValid = false;
    if (m_buffer) {
        m_buffer.reset();
    }
    m_parityBuffer.reset();
    if (m_isrBuffer) {
        m_isrBuffer.reset();
    }
}

uint32_t SoftwareSerial::baudRate() {
    return ESP.getCpuFreqMHz() * 1000000UL / m_bitCycles;
}

void SoftwareSerial::setTransmitEnablePin(int8_t txEnablePin) {
    if (isValidTxGPIOpin(txEnablePin)) {
        m_txEnableValid = true;
        m_txEnablePin = txEnablePin;
        pinMode(m_txEnablePin, OUTPUT);
        digitalWrite(m_txEnablePin, LOW);
    }
    else {
        m_txEnableValid = false;
    }
}

void SoftwareSerial::enableIntTx(bool on) {
    m_intTxEnabled = on;
}

void SoftwareSerial::enableRxGPIOPullup(bool on) {
    m_rxGPIOPullupEnabled = on;
    setRxGPIOPullUp();
}

void SoftwareSerial::enableTx(bool on) {
    if (m_txValid && m_oneWire) {
        if (on) {
            enableRx(false);
            pinMode(m_txPin, OUTPUT);
            digitalWrite(m_txPin, !m_invert);
        }
        else {
            setRxGPIOPullUp();
            enableRx(true);
        }
    }
}

void SoftwareSerial::enableRx(bool on) {
    if (m_rxValid) {
        if (on) {
            m_rxLastBit = m_pduBits - 1;
            // Init to stop bit level and current cycle
            m_isrLastCycle = (ESP.getCycleCount() | 1) ^ m_invert;
            if (m_bitCycles >= (ESP.getCpuFreqMHz() * 1000000UL) / 74880UL)
                attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitISR), this, CHANGE);
            else
                attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitSyncISR), this, m_invert ? RISING : FALLING);
        }
        else {
            detachInterrupt(digitalPinToInterrupt(m_rxPin));
        }
        m_rxEnabled = on;
    }
}

int SoftwareSerial::read() {
    if (!m_rxValid) { return -1; }
    if (!m_buffer->available()) {
        rxBits();
        if (!m_buffer->available()) { return -1; }
    }
    auto val = m_buffer->pop();
    if (m_parityBuffer)
    {
        m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
        m_parityOutPos <<= 1;
        if (!m_parityOutPos)
        {
            m_parityOutPos = 1;
            m_parityBuffer->pop();
        }
    }
    return val;
}

int SoftwareSerial::read(uint8_t* buffer, size_t size) {
    if (!m_rxValid) { return 0; }
    int avail;
    if (0 == (avail = m_buffer->pop_n(buffer, size))) {
        rxBits();
        avail = m_buffer->pop_n(buffer, size);
    }
    if (!avail) return 0;
    if (m_parityBuffer) {
        uint32_t parityBits = avail;
        while (m_parityOutPos >>= 1) ++parityBits;
        m_parityOutPos = (1 << (parityBits % 8));
        m_parityBuffer->pop_n(nullptr, parityBits / 8);
    }
    return avail;
}

size_t SoftwareSerial::readBytes(uint8_t* buffer, size_t size) {
    if (!m_rxValid || !size) { return 0; }
    size_t count = 0;
    auto start = millis();
    do {
        auto readCnt = read(&buffer[count], size - count);
        count += readCnt;
        if (count >= size) break;
        if (readCnt) start = millis();
        else optimistic_yield(1000UL);
    } while (millis() - start < _timeout);
    return count;
}

int SoftwareSerial::available() {
    if (!m_rxValid) { return 0; }
    rxBits();
    int avail = m_buffer->available();
    if (!avail) {
        optimistic_yield(10000UL);
    }
    return avail;
}

void IRAM_ATTR SoftwareSerial::preciseDelay(bool sync) {
    if (!sync)
    {
        // Reenable interrupts while delaying to avoid other tasks piling up
        if (!m_intTxEnabled) { restoreInterrupts(); }
        const auto expired = ESP.getCycleCount() - m_periodStart;
        const int32_t remaining = m_periodDuration - expired;
        const int32_t ms = remaining > 0 ? remaining / 1000L / static_cast<int32_t>(ESP.getCpuFreqMHz()) : 0;
        if (ms > 0)
        {
            delay(ms);
        }
        else
        {
            optimistic_yield(10000UL);
        }
    }
    while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) {}
    // Disable interrupts again if applicable
    if (!sync && !m_intTxEnabled) { disableInterrupts(); }
    m_periodDuration = 0;
    m_periodStart = ESP.getCycleCount();
}

void IRAM_ATTR SoftwareSerial::writePeriod(
    uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) {
    preciseDelay(true);
    if (dutyCycle)
    {
        digitalWrite(m_txPin, HIGH);
        m_periodDuration += dutyCycle;
        if (offCycle || (withStopBit && !m_invert)) preciseDelay(!withStopBit || m_invert);
    }
    if (offCycle)
    {
        digitalWrite(m_txPin, LOW);
        m_periodDuration += offCycle;
        if (withStopBit && m_invert) preciseDelay(false);
    }
}

size_t SoftwareSerial::write(uint8_t byte) {
    return write(&byte, 1);
}

size_t SoftwareSerial::write(uint8_t byte, SoftwareSerialParity parity) {
    return write(&byte, 1, parity);
}

size_t SoftwareSerial::write(const uint8_t* buffer, size_t size) {
    return write(buffer, size, m_parityMode);
}

size_t IRAM_ATTR SoftwareSerial::write(const uint8_t* buffer, size_t size, SoftwareSerialParity parity) {
    if (m_rxValid) { rxBits(); }
    if (!m_txValid) { return -1; }

    if (m_txEnableValid) {
        digitalWrite(m_txEnablePin, HIGH);
    }
    // Stop bit: if inverted, LOW, otherwise HIGH
    bool b = !m_invert;
    uint32_t dutyCycle = 0;
    uint32_t offCycle = 0;
    if (!m_intTxEnabled) {
        // Disable interrupts in order to get a clean transmit timing
        disableInterrupts();
    }
    const uint32_t dataMask = ((1UL << m_dataBits) - 1);
    bool withStopBit = true;
    m_periodDuration = 0;
    m_periodStart = ESP.getCycleCount();
    for (size_t cnt = 0; cnt < size; ++cnt) {
        uint8_t byte = pgm_read_byte(buffer + cnt) & dataMask;
        // push LSB start-data-parity-stop bit pattern into uint32_t
        // Stop bits: HIGH
        uint32_t word = ~0UL;
        // inverted parity bit, performance tweak for xor all-bits-set word
        if (parity && m_parityMode)
        {
            uint32_t parityBit;
            switch (parity)
            {
            case SWSERIAL_PARITY_EVEN:
                // from inverted, so use odd parity
                parityBit = byte;
                parityBit ^= parityBit >> 4;
                parityBit &= 0xf;
                parityBit = (0x9669 >> parityBit) & 1;
                break;
            case SWSERIAL_PARITY_ODD:
                // from inverted, so use even parity
                parityBit = byte;
                parityBit ^= parityBit >> 4;
                parityBit &= 0xf;
                parityBit = (0x6996 >> parityBit) & 1;
                break;
            case SWSERIAL_PARITY_MARK:
                parityBit = 0;
                break;
            case SWSERIAL_PARITY_SPACE:
                // suppresses warning parityBit uninitialized
            default:
                parityBit = 1;
                break;
            }
            word ^= parityBit;
        }
        word <<= m_dataBits;
        word |= byte;
        // Start bit: LOW
        word <<= 1;
        if (m_invert) word = ~word;
        for (int i = 0; i <= m_pduBits; ++i) {
            bool pb = b;
            b = word & (1UL << i);
            if (!pb && b) {
                writePeriod(dutyCycle, offCycle, withStopBit);
                withStopBit = false;
                dutyCycle = offCycle = 0;
            }
            if (b) {
                dutyCycle += m_bitCycles;
            }
            else {
                offCycle += m_bitCycles;
            }
        }
        withStopBit = true;
    }
    writePeriod(dutyCycle, offCycle, true);
    if (!m_intTxEnabled) {
        // restore the interrupt state if applicable
        restoreInterrupts();
    }
    if (m_txEnableValid) {
        digitalWrite(m_txEnablePin, LOW);
    }
    return size;
}

void SoftwareSerial::flush() {
    if (!m_rxValid) { return; }
    m_buffer->flush();
    if (m_parityBuffer)
    {
        m_parityInPos = m_parityOutPos = 1;
        m_parityBuffer->flush();
    }
}

bool SoftwareSerial::overflow() {
    bool res = m_overflow;
    m_overflow = false;
    return res;
}

int SoftwareSerial::peek() {
    if (!m_rxValid) { return -1; }
    if (!m_buffer->available()) {
        rxBits();
        if (!m_buffer->available()) return -1;
    }
    auto val = m_buffer->peek();
    if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
    return val;
}

void SoftwareSerial::rxBits() {
#ifdef ESP8266
    if (m_isrOverflow.load()) {
        m_overflow = true;
        m_isrOverflow.store(false);
    }
#else
    if (m_isrOverflow.exchange(false)) {
        m_overflow = true;
    }
#endif

    m_isrBuffer->for_each(m_isrBufferForEachDel);

    // A stop bit can go undetected if leading data bits are at same level
    // and there was also no next start bit yet, so one word may be pending.
    // Check that there was no new ISR data received in the meantime, inserting an
    // extraneous stop level bit out of sequence breaks rx.
    if (m_rxLastBit < m_pduBits - 1) {
        const uint32_t detectionCycles = (m_pduBits - 1 - m_rxLastBit) * m_bitCycles;
        if (!m_isrBuffer->available() && ESP.getCycleCount() - m_isrLastCycle > detectionCycles) {
            // Produce faux stop bit level, prevents start bit maldetection
            // cycle's LSB is repurposed for the level bit
            rxBits(((m_isrLastCycle + detectionCycles) | 1) ^ m_invert);
        }
    }
}

void SoftwareSerial::rxBits(const uint32_t isrCycle) {
    const bool level = (m_isrLastCycle & 1) ^ m_invert;

    // error introduced by edge value in LSB of isrCycle is negligible
    uint32_t cycles = isrCycle - m_isrLastCycle;
    m_isrLastCycle = isrCycle;

    uint32_t bits = cycles / m_bitCycles;
    if (cycles % m_bitCycles > (m_bitCycles >> 1)) ++bits;
    while (bits > 0) {
        // start bit detection
        if (m_rxLastBit >= (m_pduBits - 1)) {
            // leading edge of start bit?
            if (level) break;
            m_rxLastBit = -1;
            --bits;
            continue;
        }
        // data bits
        if (m_rxLastBit < (m_dataBits - 1)) {
            uint8_t dataBits = min(bits, static_cast<uint32_t>(m_dataBits - 1 - m_rxLastBit));
            m_rxLastBit += dataBits;
            bits -= dataBits;
            m_rxCurByte >>= dataBits;
            if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); }
            continue;
        }
        // parity bit
        if (m_parityMode && m_rxLastBit == (m_dataBits - 1)) {
            ++m_rxLastBit;
            --bits;
            m_rxCurParity = level;
            continue;
        }
        // stop bits
        // Store the received value in the buffer unless we have an overflow
        // if not high stop bit level, discard word
        if (bits >= static_cast<uint32_t>(m_pduBits - 1 - m_rxLastBit) && level) {
            m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits);
            if (!m_buffer->push(m_rxCurByte)) {
                m_overflow = true;
            }
            else {
                if (m_parityBuffer)
                {
                    if (m_rxCurParity) {
                        m_parityBuffer->pushpeek() |= m_parityInPos;
                    }
                    else {
                        m_parityBuffer->pushpeek() &= ~m_parityInPos;
                    }
                    m_parityInPos <<= 1;
                    if (!m_parityInPos)
                    {
                        m_parityBuffer->push();
                        m_parityInPos = 1;
                    }
                }
            }
        }
        m_rxLastBit = m_pduBits - 1;
        // reset to 0 is important for masked bit logic
        m_rxCurByte = 0;
        m_rxCurParity = false;
        break;
    }
}

void IRAM_ATTR SoftwareSerial::rxBitISR(SoftwareSerial* self) {
    uint32_t curCycle = ESP.getCycleCount();
    bool level = digitalRead(self->m_rxPin);

    // Store level and cycle in the buffer unless we have an overflow
    // cycle's LSB is repurposed for the level bit
    if (!self->m_isrBuffer->push((curCycle | 1U) ^ !level)) self->m_isrOverflow.store(true);
}

void IRAM_ATTR SoftwareSerial::rxBitSyncISR(SoftwareSerial* self) {
    uint32_t start = ESP.getCycleCount();
    uint32_t wait = self->m_bitCycles - 172U;

    bool level = self->m_invert;
    // Store level and cycle in the buffer unless we have an overflow
    // cycle's LSB is repurposed for the level bit
    if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true);

    for (uint32_t i = 0; i < self->m_pduBits; ++i) {
        while (ESP.getCycleCount() - start < wait) {};
        wait += self->m_bitCycles;

        // Store level and cycle in the buffer unless we have an overflow
        // cycle's LSB is repurposed for the level bit
        if (digitalRead(self->m_rxPin) != level)
        {
            if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true);
            level = !level;
        }
    }
}

void SoftwareSerial::onReceive(Delegate<void(int available), void*> handler) {
    receiveHandler = handler;
}

void SoftwareSerial::perform_work() {
    if (!m_rxValid) { return; }
    rxBits();
    if (receiveHandler) {
        int avail = m_buffer->available();
        if (avail) { receiveHandler(avail); }
    }
}