Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
fork_HPC_Vehicle_Classification
HPC_Vehicle_Classification
Commits
378e3b01
Commit
378e3b01
authored
Jun 17, 2021
by
Sintal
Browse files
Update main.py
parent
69e6cb7b
Pipeline
#4397
failed with stage
in 58 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
main.py
View file @
378e3b01
...
...
@@ -63,10 +63,8 @@ def extract_features(trainingDataDir, trainingDataSubDirs):
def
preprocessing_csv_data
():
print
(
"Reading Features... "
)
data
=
pd
.
read_csv
(
constants
.
FEATURES_CSV_NAME
)
data
.
head
()
# Dropping unnecessary columns (Column Filename is dropped)
data
=
data
.
drop
([
'filename'
],
axis
=
1
)
data
.
head
()
return
data
...
...
@@ -109,10 +107,11 @@ def create_and_compile_model(X, hidden_layer_dimensions):
def
train_and_save_model
(
model
,
X_train
,
y_train
,
X_test
,
y_test
):
logdir
=
constants
.
LOG_DIR_PATH
tensorboard_callback
=
keras
.
callbacks
.
TensorBoard
(
log_dir
=
logdir
)
#
logdir = constants.LOG_DIR_PATH
#
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
print
(
"Start Training..."
)
history
=
model
.
fit
(
X_train
,
y_train
,
epochs
=
35
,
validation_data
=
(
X_test
,
y_test
),
callbacks
=
[
tensorboard_callback
])
#history = model.fit(X_train, y_train, epochs=35, validation_data=(X_test, y_test), callbacks=[tensorboard_callback])
history
=
model
.
fit
(
X_train
,
y_train
,
epochs
=
35
,
validation_data
=
(
X_test
,
y_test
))
# Saving the trained model to avoid re-training
#model.save(constants.TRAINED_MODEL)
return
history
...
...
@@ -155,14 +154,10 @@ def plot_model_loss(history):
plt
.
legend
([
'Train'
,
'Test'
],
loc
=
'upper right'
)
plt
.
show
()
def
construct_and_apply_network
(
hidden_layer_dimensions
):
data
=
preprocessing_csv_data
()
target_labels
,
encoder
=
encode_labels
(
data
)
X
=
normalize_data
(
data
)
def
construct_and_apply_network
(
hidden_layer_dimensions
,
data
,
target_labels
,
encoder
,
X
):
X_train
,
X_test
,
y_train
,
y_test
=
train_test_data_split
(
X
,
target_labels
)
model
=
create_and_compile_model
(
X
,
hidden_layer_dimensions
)
history
=
train_and_save_model
(
model
,
X_train
,
y_train
,
X_test
,
y_test
)
history
predict
(
model
,
X_test
,
y_test
)
accuracy
=
model_predict
(
model
,
X_test
,
y_test
)
#plot_model_accuracy(history)
...
...
@@ -224,6 +219,10 @@ if __name__ == "__main__":
else
:
extract_features
(
trainingDataDir
,
trainingDataSubDirs
)
data
=
preprocessing_csv_data
()
target_labels
,
encoder
=
encode_labels
(
data
)
X
=
normalize_data
(
data
)
max_accuracy
=
0
neurons_increment_by
=
8
start_neuron_value
=
8
...
...
@@ -242,7 +241,7 @@ if __name__ == "__main__":
row_counter
+=
1
hidden_layer_dimensions
[
i
]
=
j
start
=
time
.
time
()
new_accuracy
=
construct_and_apply_network
(
hidden_layer_dimensions
)
new_accuracy
=
construct_and_apply_network
(
hidden_layer_dimensions
,
data
,
target_labels
,
encoder
,
X
)
end
=
time
.
time
()
elapsed_time
=
end
-
start
sheet
.
cell
(
row
=
(
row_counter
),
column
=
1
).
value
=
hidden_layer_dimensions
.
__str__
()
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment