An error occurred while loading the file. Please try again.
-
Pado authoredbd414ae2
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code is originally from https://github.com/nlpyang/pytorch-transformers/blob/master/examples/run_glue.py
# Adapted to the SAG task by Ulrike Pado, HFT Stuttgart: Run a fine-tuned model on given input data to predict short-answer grades.
from __future__ import absolute_import, division, print_function
import argparse
import os
import random
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from sklearn.metrics import f1_score, accuracy_score
from sklearn.metrics import classification_report
from transformers import (
BertConfig,
BertForSequenceClassification,
BertTokenizer,
)
from transformers import glue_compute_metrics as compute_metrics
from transformers import (
glue_convert_examples_to_features as convert_examples_to_features,
)
from transformers.data.processors.utils import (
DataProcessor,
InputExample,
)
#logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
}
def set_seed():
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
# and SemEval evaluation (unseen questions, unseen answers, unseen domains)
eval_task_names = ("sag",
)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
eval_outputs_dirs = (
(args.output_dir, )
)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(
args, eval_task, tokenizer
)
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
args.eval_batch_size = 8
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size
)
# Eval!
#logger.info("***** Running evaluation {} *****".format(prefix))
#logger.info(" Task name = {}".format(eval_task))
#logger.info(" Num examples = %d", len(eval_dataset))
#logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in eval_dataloader:
#logger.info(" Starting eval for batch")
model.eval()
batch = tuple(t.to(args.device) for t in batch)
#logger.info(" Batch converted to tuple")
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3],
}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
#logger.info("Eval loss: %d", eval_loss)
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0
)
#logger.info("Prediction generation done")
# classification task; choose maximum label
preds = np.argmax(preds, axis=1)
# if evaluating SAG, return both accuracy and F1
task = "sag"
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# logger.info("starting to compute metrics")
result = my_compute_metrics(task, preds, out_label_ids)
results.update(result)
# print predictions made by the current model
if args.do_print_predictions:
print_predictions(args, preds)
output_eval_file = os.path.join(
eval_output_dir, prefix + "-eval_results.txt")
#logger.info("sending output to "+str(output_eval_file));
with open(output_eval_file, "w") as writer:
#logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
#logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer):
examples = []
# choose the correct processor to read the data
processor = (
SemEvalProcessor()
)
output_mode = "classification"
#logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
examples = (
processor.get_test_examples(args.data_dir)
)
# We are continuing to train mnli models, so task = mnli to create
# the correct type of features
feature_task = "mnli" if task.startswith("sag") else task
features = convert_examples_to_features(
examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
output_mode=output_mode,
task=feature_task
)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(
[f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor(
[f.attention_mask for f in features], dtype=torch.long
)
all_token_type_ids = torch.tensor(
[f.token_type_ids for f in features], dtype=torch.long
)
# do classification setup
all_labels = torch.tensor(
[f.label for f in features], dtype=torch.long)
dataset = TensorDataset(
all_input_ids, all_attention_mask, all_token_type_ids, all_labels
)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
return dataset
def main():
# Where are we?
location=".";
if getattr(sys, 'frozen', False):
# running in a bundle
location = sys._MEIPASS
# open a log file next to the executable with line buffering
#out = open("log.txt", "a", buffering=1);
#print("Started English processing in", location, file=out);
parser = argparse.ArgumentParser()
# Required parameters - adapt to current directory
parser.add_argument(
"--data_dir",
# default=None,
default=location+"\\Skript\\outputs\\",
type=str,
# required=True,
required=False,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_type",
# default=None,
default="bert",
type=str,
# required=True,
required=False,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES),
)
parser.add_argument(
"--model_name_or_path",
# default=None,
#default= "textattack/bert-base-uncased-MNLI",
default=location+"\\Skript\\english\\seb-bert-mnli",
type=str,
# required=True,
required=False,
help="Path to pre-trained model",
)
parser.add_argument(
"--tokenizer_name",
default="textattack/bert-base-uncased-MNLI",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--output_dir",
# default=None,
default=location+"\\Skript\\english\\seb-bert-mnli",
type=str,
# required=True,
required=False,
help="The output directory where checkpoints will be written.",
)
parser.add_argument(
"--config_name",
default=location+"\\Skript\\english\\seb-bert-mnli\\config.json",
type=str,
help="Pretrained config name or path if not the same as model_name",
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
# default=128,
default=256,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
# "--do_test", action="store_true", help="Whether to run eval on the test set."
"--do_test", action="store_false", help="Whether to run eval on the test set."
),
parser.add_argument(
#"--do_print_predictions",action="store_true",help="Whether to print the model predictions for manual inspection.",
"--do_print_predictions",
action="store_false",
help="Whether to print the model predictions for manual inspection.",
),
parser.add_argument(
"--do_lower_case",
# action="store_true",
action="store_false",
help="Set this flag if you are using an uncased model.",
)
parser.add_argument(
"--overwrite_output_dir",
# action="store_true",
action="store_false",
help="Overwrite the content of the output directory",
)
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup CPU processing
device = torch.device("cpu")
args.device = device
# Setup logging
#logging.basicConfig(
# format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
# datefmt="%m/%d/%Y %H:%M:%S",
# filename='log.txt',
# filemode='a',
# level=logging.INFO,
#)
#logger.warning(
# "Device: %s",
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# device
#)
# Set seed to 42
set_seed()
processor = (
SemEvalProcessor()
)
args.output_mode = (
"classification"
)
label_list = processor.get_labels()
num_labels = len(label_list)
args.model_type = args.model_type.lower()
#logger.info("Model %s", args.model_type)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else
args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model.to(args.device)
#logger.info("Training/evaluation parameters %s", args)
# Evaluation
results = {}
if args.do_test:
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else
args.model_name_or_path,
do_lower_case=args.do_lower_case,
)
checkpoints = [args.output_dir]
#logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split(
"-")[-1] if len(checkpoints) > 1 else ""
prefix = str(global_step)
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v)
for k, v in result.items())
results.update(result)
else: # use currently active model
result = evaluate(args, model, tokenizer, prefix="test")
#results.update(result)
return results
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# define a new data processor for the SemEval data/SAG task
class SemEvalProcessor(DataProcessor):
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train"
)
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev"
)
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test"
)
def get_labels(self):
"""See base class."""
return ["correct", "incorrect", "NONE"]
def _create_examples(self, lines, set_type):
"""Creates examples for the test set."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = line[0]
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a,
text_b=text_b, label=label)
)
return examples
# custom metrics for SAG: F1 and Accuracy
def my_compute_metrics(eval_task, preds, labels):
result = {}
if eval_task == "sag":
acc = accuracy_score(y_pred=preds, y_true=labels)
f1_weighted = f1_score(y_pred=preds, y_true=labels, average="weighted")
f1_macro = f1_score(y_pred=preds, y_true=labels, average="macro")
result = {"f1-weighted": f1_weighted,
"f1-macro": f1_macro, "accuracy": acc}
else:
result = compute_metrics(eval_task, preds, labels)
return result
def print_predictions(args, preds):
# generate data set part of output path
dir_name = (""
)
# get examples
processor = (
SemEvalProcessor()
)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
examples = (
processor.get_test_examples(args.data_dir)
)
# observed grade list created
obs_grade = [ex.label for ex in examples]
# suggested grade list created
sugg_grade = ['correct' if pred == 0 else 'incorrect' for pred in preds]
# flag: do observed grades exist?
count=0
# Check if obs_grade contains "NONE" values or is empty
if not obs_grade or all(grade == 'NONE' for grade in obs_grade):
count += 1
else:
# classification report
classification_rep = classification_report(obs_grade, sugg_grade)
report_string = classification_rep
report_lines = report_string.split('\n')
# print(report_lines)
# accuracy line
formatted_accuracy_line = "\t".join(report_lines[5].split())
formatted_acc_line_with_tabs = (formatted_accuracy_line[:formatted_accuracy_line.index('\t',
formatted_accuracy_line.index(
'\t'))] + '\t\t' +
formatted_accuracy_line[
formatted_accuracy_line.index('\t', formatted_accuracy_line.index('\t')):])
# #weighted avg printing
#
wt_avg_line = "\t".join(report_lines[7].split())
new_wt_avg_line = wt_avg_line.replace("\t", " ", 1)
# Join the entire newly formatted list into a single string
formatted_output = "\n".join([
"\t precision \t recall \t f1-score \t support",
"\t".join(report_lines[2].split()),
"\t".join(report_lines[3].split()),
formatted_acc_line_with_tabs,
new_wt_avg_line
])
with open(args.data_dir + "/" + dir_name + "/predictions.txt", "w", encoding="utf8") as writer:
writer.write(
"question\treferenceAnswer\tstudentAnswer\tsuggested grade\tobserved grade\n")
for i in range(len(examples)):
# iterate over data
# print prediction as a text-based label
hrpred = "incorrect"
if preds[i] == 0:
hrpred = "correct"
# get guid, text, from inputExample
writer.write(
str(examples[i].guid)
+ "\t"
+ examples[i].text_a
+ "\t"
+ examples[i].text_b
+ "\t"
+ hrpred
+ "\t"
+ examples[i].label
+ "\n"
)
if count == 1:
writer.write("\nClassification Report cannot be printed as observed grade column is empty or filled "
"with 'NONE' or 'none' values\n")
else:
# Write the classification report to the file
writer.write(
"\nClassification Report - high Precision for classes correct or incorrect indicates that the class prediction is reliable:\n")
writer.write(formatted_output)
if __name__ == "__main__":
main()