Commit a8f8dd7c authored by Pado's avatar Pado
Browse files

initial commit of ASYST project to public repository

parents
MIT License
Copyright (c) 2022 Larissa Kirschner
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
\ No newline at end of file
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code is originally from https://github.com/nlpyang/pytorch-transformers/blob/master/examples/run_glue.py
# Adapted to the SAG task by Ulrike Pado, HFT Stuttgart: Run a fine-tuned model on given input data to predict short-answer grades.
from __future__ import absolute_import, division, print_function
import argparse
import os
import random
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from sklearn.metrics import f1_score, accuracy_score
from transformers import (
BertConfig,
BertForSequenceClassification,
BertTokenizer,
)
from transformers import glue_compute_metrics as compute_metrics
from transformers import (
glue_convert_examples_to_features as convert_examples_to_features,
)
from transformers.data.processors.utils import (
DataProcessor,
InputExample,
)
#logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
}
def set_seed():
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
# and SemEval evaluation (unseen questions, unseen answers, unseen domains)
eval_task_names = ("sag",
)
eval_outputs_dirs = (
(args.output_dir, )
)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(
args, eval_task, tokenizer
)
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
args.eval_batch_size = 8
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size
)
# Eval!
#logger.info("***** Running evaluation {} *****".format(prefix))
#logger.info(" Task name = {}".format(eval_task))
#logger.info(" Num examples = %d", len(eval_dataset))
#logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in eval_dataloader:
#logger.info(" Starting eval for batch")
model.eval()
batch = tuple(t.to(args.device) for t in batch)
#logger.info(" Batch converted to tuple")
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3],
}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
#logger.info("Eval loss: %d", eval_loss)
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0
)
#logger.info("Prediction generation done")
# classification task; choose maximum label
preds = np.argmax(preds, axis=1)
# if evaluating SAG, return both accuracy and F1
task = "sag"
# logger.info("starting to compute metrics")
result = my_compute_metrics(task, preds, out_label_ids)
results.update(result)
# print predictions made by the current model
if args.do_print_predictions:
print_predictions(args, preds)
output_eval_file = os.path.join(
eval_output_dir, prefix + "-eval_results.txt")
#logger.info("sending output to "+str(output_eval_file));
with open(output_eval_file, "w") as writer:
#logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
#logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer):
examples = []
# choose the correct processor to read the data
processor = (
SemEvalProcessor()
)
output_mode = "classification"
#logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
examples = (
processor.get_test_examples(args.data_dir)
)
# We are continuing to train mnli models, so task = mnli to create
# the correct type of features
feature_task = "mnli" if task.startswith("sag") else task
features = convert_examples_to_features(
examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
output_mode=output_mode,
task=feature_task
)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(
[f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor(
[f.attention_mask for f in features], dtype=torch.long
)
all_token_type_ids = torch.tensor(
[f.token_type_ids for f in features], dtype=torch.long
)
# do classification setup
all_labels = torch.tensor(
[f.label for f in features], dtype=torch.long)
dataset = TensorDataset(
all_input_ids, all_attention_mask, all_token_type_ids, all_labels
)
return dataset
def main():
# Where are we?
location=".";
if getattr(sys, 'frozen', False):
# running in a bundle
location = sys._MEIPASS
# open a log file next to the executable with line buffering
#out = open("log.txt", "a", buffering=1);
#print("Started English processing in", location, file=out);
parser = argparse.ArgumentParser()
# Required parameters - adapt to current directory
parser.add_argument(
"--data_dir",
# default=None,
default=location+"\\Skript\\outputs\\",
type=str,
# required=True,
required=False,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_type",
# default=None,
default="bert",
type=str,
# required=True,
required=False,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES),
)
parser.add_argument(
"--model_name_or_path",
# default=None,
#default= "textattack/bert-base-uncased-MNLI",
default=location+"\\Skript\\english\\seb-bert-mnli",
type=str,
# required=True,
required=False,
help="Path to pre-trained model",
)
parser.add_argument(
"--tokenizer_name",
default="textattack/bert-base-uncased-MNLI",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--output_dir",
# default=None,
default=location+"\\Skript\\english\\seb-bert-mnli",
type=str,
# required=True,
required=False,
help="The output directory where checkpoints will be written.",
)
parser.add_argument(
"--config_name",
default=location+"\\Skript\\english\\seb-bert-mnli\\config.json",
type=str,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
# default=128,
default=256,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
# "--do_test", action="store_true", help="Whether to run eval on the test set."
"--do_test", action="store_false", help="Whether to run eval on the test set."
),
parser.add_argument(
#"--do_print_predictions",action="store_true",help="Whether to print the model predictions for manual inspection.",
"--do_print_predictions",
action="store_false",
help="Whether to print the model predictions for manual inspection.",
),
parser.add_argument(
"--do_lower_case",
# action="store_true",
action="store_false",
help="Set this flag if you are using an uncased model.",
)
parser.add_argument(
"--overwrite_output_dir",
# action="store_true",
action="store_false",
help="Overwrite the content of the output directory",
)
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup CPU processing
device = torch.device("cpu")
args.device = device
# Setup logging
#logging.basicConfig(
# format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
# datefmt="%m/%d/%Y %H:%M:%S",
# filename='log.txt',
# filemode='a',
# level=logging.INFO,
#)
#logger.warning(
# "Device: %s",
# device
#)
# Set seed to 42
set_seed()
processor = (
SemEvalProcessor()
)
args.output_mode = (
"classification"
)
label_list = processor.get_labels()
num_labels = len(label_list)
args.model_type = args.model_type.lower()
#logger.info("Model %s", args.model_type)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else
args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model.to(args.device)
#logger.info("Training/evaluation parameters %s", args)
# Evaluation
results = {}
if args.do_test:
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else
args.model_name_or_path,
do_lower_case=args.do_lower_case,
)
checkpoints = [args.output_dir]
#logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split(
"-")[-1] if len(checkpoints) > 1 else ""
prefix = str(global_step)
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v)
for k, v in result.items())
results.update(result)
else: # use currently active model
result = evaluate(args, model, tokenizer, prefix="test")
#results.update(result)
return results
# define a new data processor for the SemEval data/SAG task
class SemEvalProcessor(DataProcessor):
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train"
)
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev"
)
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test"
)
def get_labels(self):
"""See base class."""
return ["correct", "incorrect", "NONE"]
def _create_examples(self, lines, set_type):
"""Creates examples for the test set."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = line[0]
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a,
text_b=text_b, label=label)
)
return examples
# custom metrics for SAG: F1 and Accuracy
def my_compute_metrics(eval_task, preds, labels):
result = {}
if eval_task == "sag":
acc = accuracy_score(y_pred=preds, y_true=labels)
f1_weighted = f1_score(y_pred=preds, y_true=labels, average="weighted")
f1_macro = f1_score(y_pred=preds, y_true=labels, average="macro")
result = {"f1-weighted": f1_weighted,
"f1-macro": f1_macro, "accuracy": acc}
else:
result = compute_metrics(eval_task, preds, labels)
return result
def print_predictions(args, preds):
# generate data set part of output path
dir_name = (""
)
# get examples
processor = (
SemEvalProcessor()
)
examples = (
processor.get_test_examples(args.data_dir)
)
with open(args.data_dir + "/" + dir_name + "/predictions.txt", "w", encoding="utf8") as writer:
# print("# examples: " + str(len(examples)))
# print("# labels: " + str(len(labels)))
# print("# preds: " + str(len(preds)))
writer.write(
"question\treferenceAnswer\tstudentAnswer\tsuggested grade\tobserved grade\n")
for i in range(len(examples)):
# iterate over data
# print prediction as a text-based label
hrpred = "incorrect"
if preds[i] == 0:
hrpred = "correct"
# get guid, text, from inputExample
writer.write(
str(examples[i].guid)
+ "\t"
+ examples[i].text_a
+ "\t"
+ examples[i].text_b
+ "\t"
+ hrpred
+ "\t"
+ examples[i].label
+ "\n"
)
# else: print("Labels don't match! "+str(i)+": "+str(examples[i].label)+" "+str(labels[i]))
if __name__ == "__main__":
main()
{
"_name_or_path": "textattack/bert-base-uncased-MNLI",
"architectures": [
"BertForSequenceClassification"
],
"attention_probs_dropout_prob": 0.1,
"finetuning_task": "sag-seb",
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.2.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
}
MIT License
Copyright (c) 2022 Yunus Eryilmaz
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.