run_LR_SBERT.py 4.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import sys
import time
import numpy as np
import pandas as pd

# UP
import pickle
import argparse

from sklearn import metrics
from sentence_transformers import models, SentenceTransformer
from sklearn.linear_model import LogisticRegression, Perceptron
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_validate, cross_val_predict

__author__ = "Yunus Eryilmaz"
__version__ = "1.0"
__date__ = "21.07.2021"
__source__ = "https://pypi.org/project/sentence-transformers/0.3.0/"



def main():
    parser = argparse.ArgumentParser()

    # Where are we?
    location = ".";
    if getattr(sys, 'frozen', False):
        # running in a bundle
        location = sys._MEIPASS

    # Required parameters
    parser.add_argument(
        "--data",
        #default=None,
        default="/var/www/html/moodle/asyst/Source/Skript/outputs/test.tsv",
        type=str,
        # required=True,
        required=False,
        help="The input data file for the task.",
    )
    parser.add_argument(
        "--output_dir",
        # default=None,
        default="/var/www/html/moodle/asyst/Source/Skript/outputs",
        type=str,
        # required=True,
        required=False,
        help="The output directory where predictions will be written.",
    )
    parser.add_argument(
        "--model_dir",
        # default=None,
        default=location+"/Skript/german/models",
        type=str,
        # required=True,
        required=False,
        help="The directory where the ML models are stored.",
    )
    args = parser.parse_args()

    # open a log file next to the executable with line buffering
    # out = open("log.txt", "a",buffering=1);

    # print("Started German processing in",location,file=out);

    # import SentenceTransformer-model
    start_time = time.time()

    # print("Reading from",args.data, file=out);

    with open(os.path.join(location,args.data)) as ft:
        dft = pd.read_csv(ft, delimiter='\t')

    # Sentences we want sentence embeddings for
    sentences1_test = dft['referenceAnswer'].values.tolist()
    sentences2_test = dft['studentAnswer'].values.tolist()
    # print("Input read:",sentences2_test, file=out);

    # Use BERT for mapping tokens to embeddings
    word_embedding_model = models.Transformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
    # pooling operation can choose by setting true (Apply mean pooling to get one fixed sized sentence vector)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
                                   pooling_mode_mean_tokens=True,
                                   pooling_mode_cls_token=False,
                                   pooling_mode_max_tokens=False)

    # compute the sentence embeddings for both sentences
    model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
    # print("Model loaded", file=out);

    sentence_embeddings1_test = model.encode(sentences1_test, convert_to_tensor=True, show_progress_bar=False)
    # print("Embeddings RefA:",sentence_embeddings1_test,file=out);

    sentence_embeddings2_test = model.encode(sentences2_test, convert_to_tensor=True, show_progress_bar=False)
    # print("Embeddings found", file=out);

    # Possible concatenations from the embedded sentences can be selected
    def similarity(sentence_embeddings1, sentence_embeddings2):
        # I2=(|u − v| + u ∗ v)
        simi = abs(np.subtract(sentence_embeddings1, sentence_embeddings2)) + np.multiply(sentence_embeddings1,
                                                                                          sentence_embeddings2)

        return simi

    # calls the similarity function and get the concatenated values between the sentence embeddings
    computed_simis_test = similarity(sentence_embeddings1_test, sentence_embeddings2_test)

    # get the sentence embeddings and the labels fpr train and test

    X_test = computed_simis_test
    # Y_test = np.array(dft['label'])

    # UP: read pre-trained LR model
    clf_log = pickle.load(open("/var/www/html/moodle/asyst/Source/Skript/german/models/clf_BERT.pickle", "rb"))


    # print('--------Evaluate on Testset------- ', file=out)
    predictions = clf_log.predict(X_test)

    # UP print results
    with open(args.output_dir + "/predictions.txt", "w") as writer:
        writer.write("question\treferenceAnswer\tstudentAnswer\tsuggested grade\tobserved grade\n")
        for i in range(len(dft)):
            hrpred = "incorrect"
            if predictions[i] == 1:
                hrpred = "correct"
            writer.write(
                str(dft.iloc[i][0])
                + "\t"
                + str(dft.iloc[i][1])
                + "\t"
                + str(dft.iloc[i][2])
                + "\t"
                + str(hrpred)
                + "\t"
                + str(dft.iloc[i][3])
                + "\n"
            )

    # print('\nExecution time:', time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time)),file=out)


if __name__ == "__main__":
    main()