Commit d436497e authored by Eric Duminil's avatar Eric Duminil
Browse files

Current version from old git. Release 0.0.9

parents
.pioenvs
.pio/libdeps
.pio/build
.vscode
*.ino.cpp
config.h
config.hftstuttgart.h
.project
.cproject
.settings
#ifndef AMPEL_H_INCLUDED
#define AMPEL_H_INCLUDED
/*****************************************************************
* Libraries *
*****************************************************************/
#include "config.h"
#ifndef MEASUREMENT_TIMESTEP
# error Missing config.h file. Please copy config.example.h to config.h.
#endif
#ifdef MQTT
# include "mqtt.h"
#endif
#include "util.h"
#include "wifi_util.h"
#include "co2_sensor.h"
#ifdef HTTP
# include "web_server.h"
#endif
#include "led_effects.h"
#include "csv_writer.h"
#if defined(ESP8266)
//allows sensor to be seen as SENSOR_ID.local, from the local network. For example : espd05cc9.local
# include <ESP8266mDNS.h>
#elif defined(ESP32)
# include <ESPmDNS.h>
#endif
void keepServicesAlive();
void checkFlashButton();
#endif
/***
* ____ ___ ____ _ _
* / ___/ _ \___ \ / \ _ __ ___ _ __ ___| |
* | | | | | |__) | / _ \ | '_ ` _ \| '_ \ / _ \ |
* | |__| |_| / __/ / ___ \| | | | | | |_) | __/ |
* \____\___/_____| /_/__ \_\_| |_| |_| .__/ \___|_| _
* | | | |/ _|_ _| / ___|| |_ _ _| |_| |_ __ _ __ _ _ __| |_
* | |_| | |_ | | \___ \| __| | | | __| __/ _` |/ _` | '__| __|
* | _ | _| | | ___) | |_| |_| | |_| || (_| | (_| | | | |_
* |_| |_|_| |_| |____/ \__|\__,_|\__|\__\__, |\__,_|_| \__|
* |___/
*/
#include "Ampel.h"
/*****************************************************************
* GPL License *
*****************************************************************/
/*
* This file is part of the "CO2 Ampel" project (https://gitlab.rz.hft-stuttgart.de/otto/hft-stuttgart_co2_ampel)
* Copyright (c) 2020 HfT Stuttgart.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*****************************************************************
* Authors *
*****************************************************************/
/*
* Eric Duminil
* Robert Otto
* Myriam Guedey
* Tobias Gabriel Erhart
* Jonas Stave
*/
/*****************************************************************
* Configuration *
*****************************************************************/
/*
* Please define settings in 'config.h'.
* There's an example config file called 'config.example.h'.
* You can copy 'config.public.h' (stored in Git) to 'config.h' (not stored in Git),
* and define your credentials and parameters in 'config.h'.
*/
/*****************************************************************
* Setup *
*****************************************************************/
void setup() {
LedEffects::setupOnBoardLED();
LedEffects::onBoardLEDOff();
Serial.begin(BAUDS);
pinMode(0, INPUT); // Flash button (used for forced calibration)
LedEffects::setupRing();
sensor::initialize();
Serial.print(F("Sensor ID: "));
Serial.println(SENSOR_ID);
Serial.print(F("Board : "));
Serial.println(BOARD);
// Try to connect to Wi-Fi
WiFiConnect(SENSOR_ID);
Serial.print(F("WiFi STATUS: "));
Serial.println(WiFi.status());
if (WiFi.status() == WL_CONNECTED) {
#ifdef HTTP
web_server::initialize();
#endif
ntp::initialize();
if (MDNS.begin(SENSOR_ID.c_str())) { // Start the mDNS responder for SENSOR_ID.local
MDNS.addService("http", "tcp", 80);
Serial.println(F("mDNS responder started"));
} else {
Serial.println(F("Error setting up MDNS responder!"));
}
#ifdef MQTT
mqtt::initialize("CO2sensors/" + SENSOR_ID);
#endif
}
csv_writer::initialize();
}
/*****************************************************************
* Main loop *
*****************************************************************/
void loop() {
//NOTE: Loop should never take more than 1000ms. Split in smaller methods and logic if needed.
//TODO: Restart every day or week, in order to not let t0 overflow?
uint32_t t0 = millis();
/**
* USER INTERACTION
*/
keepServicesAlive();
// Short press for night mode, Long press for calibration.
checkFlashButton();
/**
* GET DATA
*/
bool freshData = sensor::scd30.dataAvailable(); // Alternative : close to time-step AND dataAvailable, to avoid asking the sensor too often.
if (freshData) {
sensor::co2 = sensor::scd30.getCO2();
sensor::temperature = sensor::scd30.getTemperature();
sensor::humidity = sensor::scd30.getHumidity();
}
//NOTE: Data is available, but it's sometimes erroneous: the sensor outputs zero ppm but non-zero temperature and non-zero humidity.
if (sensor::co2 <= 0) {
// No measurement yet. Waiting.
LedEffects::showWaitingLED(color::blue);
return;
}
/**
* Fresh data. Show it and send it if needed.
*/
if (freshData) {
sensor::timestamp = ntp::getLocalTime();
Serial.println(sensor::timestamp);
Serial.print(F("co2(ppm): "));
Serial.print(sensor::co2);
Serial.print(F(" temp(C): "));
Serial.print(sensor::temperature);
Serial.print(F(" humidity(%): "));
Serial.println(sensor::humidity);
csv_writer::logIfTimeHasCome(sensor::timestamp, sensor::co2, sensor::temperature, sensor::humidity);
#ifdef MQTT
mqtt::publishIfTimeHasCome(sensor::timestamp, sensor::co2, sensor::temperature, sensor::humidity);
#endif
}
if (sensor::co2 < 250) {
// Sensor should be calibrated.
LedEffects::showWaitingLED(color::magenta);
return;
}
/**
* Display data, even if it's "old" (with breathing).
* Those effects include a short delay.
*/
if (sensor::co2 < 2000) {
LedEffects::displayCO2color(sensor::co2);
LedEffects::breathe(sensor::co2);
} else { // >= 2000: entire ring blinks red
LedEffects::redAlert();
}
uint32_t duration = millis() - t0;
if (duration > max_loop_duration) {
max_loop_duration = duration;
Serial.print("Max loop duration : ");
Serial.print(max_loop_duration);
Serial.println(" ms.");
}
}
/**
* Checks if flash button has been pressed:
* If not, do nothing.
* If short press, toggle LED display.
* If long press, start calibration process.
*/
void checkFlashButton() {
if (!digitalRead(0)) { // Button has been pressed
LedEffects::onBoardLEDOn();
delay(300);
if (digitalRead(0)) {
Serial.println(F("Flash has been pressed for a short time. Should toggle night mode."));
LedEffects::toggleNightMode();
} else {
Serial.println(F("Flash has been pressed for a long time. Keep it pressed for calibration."));
if (LedEffects::countdownToZero() < 0) {
sensor::startCalibrationProcess();
}
}
LedEffects::onBoardLEDOff();
}
}
void keepServicesAlive() {
if (WiFi.status() == WL_CONNECTED) {
#if defined(ESP8266)
//NOTE: Sadly, there seems to be a bug in the current MDNS implementation.
// It stops working after 2 minutes. And forcing a restart leads to a memory leak.
MDNS.update();
#endif
ntp::update(); // NTP client has its own timer. It will connect to NTP server every 60s.
#ifdef HTTP
web_server::update();
#endif
#ifdef MQTT
mqtt::keepConnection(); // MQTT client has its own timer. It will keep alive every 15s.
#endif
}
}
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.
all:
pio -f -c vim run
upload:
pio -f -c vim run --target upload -e $(board)
clean:
pio -f -c vim run --target clean
program:
pio -f -c vim run --target program
uploadfs:
pio -f -c vim run --target uploadfs
update:
pio -f -c vim update
monitor:
pio device monitor --filter colorize
# CO<sub>2</sub> Ampel
*CO<sub>2</sub> Ampel* is an open-source project, written in C++ for ESP8266 or ESP32.
It measures the current CO<sub>2</sub> concentration (in ppm), and displays it on an LED ring.
The room should be ventilated as soon as one LED turns red.
## Hardware Requirements
* [ESP8266](https://en.wikipedia.org/wiki/ESP8266) or [ESP32](https://en.wikipedia.org/wiki/ESP32) microcontroller (this project has been tested with *ESP8266 ESP-12 WIFI* and *TTGO ESP32 SX1276 LoRa*)
* [Sensirion SCD30](https://www.sensirion.com/en/environmental-sensors/carbon-dioxide-sensors/carbon-dioxide-sensors-co2/) "Sensor Module for HVAC and Indoor Air Quality Applications"
* [NeoPixel Ring - 12](https://www.adafruit.com/product/1643)
## Software Requirements
* [PlatformIO](https://platformio.org/)
or
* [Arduino IDE](https://www.arduino.cc/en/software)
## Installation
* If `config.h` does not exist, copy it from `config.public.h`
* Modify `config.h`, e.g. for measurement time-steps, WiFi access, MQTT, NTP and web-server.
### PlatformIO
PlatformIO can be run from [VSCODE](https://platformio.org/install/ide?install=vscode), [Eclipse CDT](https://www.eclipse.org/cdt/) or console:
```bash
make upload board=esp8266 && make monitor # For ESP8266
```
```bash
make upload board=esp32 && make monitor # For ESP32
```
### Arduino IDE
* All the libraries are included in this repository. No need to install anything via *Library Manager*.
* Add your board to the [board manager](https://github.com/esp8266/Arduino#installing-with-boards-manager). Either ESP8266:
http://arduino.esp8266.com/stable/package_esp8266com_index.json
or ESP32:
https://dl.espressif.com/dl/package_esp32_index.json
* Choose the correct board in *Tools > Board > ...*
* Choose the correct *Flash size* (e.g. "Flash Size : 4MB (1MB FS, OTA:~1019kB)" for *ESP8266 ESP-12 WIFI*)
* *Verify*
* *Upload*
* *Tools > Serial Monitor*
## Authors
* Eric Duminil
* Robert Otto
* Myriam Guedey
* Tobias Gabriel Erhart
* Jonas Stave
Hochschule für Technik Stuttgart
## Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
## License
Copyright © 2020, [HfT Stuttgart](https://www.hft-stuttgart.de/)
[GPLv3](https://choosealicense.com/licenses/gpl-3.0/)
#include "co2_sensor.h"
namespace config {
// Values should be defined in config.h
uint16_t measurement_timestep = MEASUREMENT_TIMESTEP; // [s] Value between 2 and 1800 (range for SCD30 sensor)
const uint16_t altitude_above_sea_level = ALTITUDE_ABOVE_SEA_LEVEL; // [m]
uint16_t co2_calibration_level = ATMOSPHERIC_CO2_CONCENTRATION; // [ppm]
#ifdef TEMPERATURE_OFFSET
// Residual heat from CO2 sensor seems to be high enough to change the temperature reading. How much should it be offset?
// NOTE: Sign isn't relevant. The returned temperature will always be shifted down.
const float temperature_offset = TEMPERATURE_OFFSET; // [K]
#else
const float temperature_offset = -3.0; // [K] Temperature measured by sensor is usually at least 3K too high.
#endif
const bool auto_calibrate_sensor = AUTO_CALIBRATE_SENSOR; // [true / false]
}
namespace sensor {
SCD30 scd30;
int16_t co2 = 0;
float temperature = 0;
float humidity = 0;
String timestamp = "";
void initialize() {
#if defined(ESP8266)
Wire.begin(12, 14); // ESP8266 - D6, D5;
#endif
#if defined(ESP32)
Wire.begin(21, 22); // ESP32
/**
* SCD30 ESP32
* VCC --- 3V3
* GND --- GND
* SCL --- SCL (GPIO22) //NOTE: GPIO3 Would be more convenient (right next to GND)
* SDA --- SDA (GPIO21) //NOTE: GPIO1 would be more convenient (right next to GPO3)
*/
#endif
// CO2
if (scd30.begin(config::auto_calibrate_sensor) == false) {
Serial.println("Air sensor not detected. Please check wiring. Freezing...");
while (1) {
LedEffects::showWaitingLED(color::red);
}
}
// SCD30 has its own timer.
Serial.println("\nSetting SCD30 timestep to " + String(config::measurement_timestep) + " s.");
scd30.setMeasurementInterval(config::measurement_timestep); // [s]
Serial.print("Setting temperature offset to -");
Serial.print(abs(config::temperature_offset));
Serial.println(" K.");
scd30.setTemperatureOffset(abs(config::temperature_offset)); // setTemperatureOffset only accepts positive numbers, but shifts the temperature down.
Serial.print("Temperature offset is : -");
Serial.print(scd30.getTemperatureOffset());
Serial.println(" K");
Serial.print("Auto-calibration is ");
Serial.println(config::auto_calibrate_sensor ? "ON." : "OFF.");
}
// Force SCD30 calibration with countdown.
void startCalibrationProcess() {
/** From the sensor documentation:
* For best results, the sensor has to be run in a stable environment in continuous mode at
* a measurement rate of 2s for at least two minutes before applying the FRC command and sending the reference value.
*/
Serial.println("Setting SCD30 timestep to 2s, prior to calibration.");
scd30.setMeasurementInterval(2); // [s] The change will only take effect after next measurement.
LedEffects::showKITTWheel(color::blue, config::measurement_timestep);
Serial.println("Waiting 2 minutes.");
LedEffects::showKITTWheel(color::blue, 120);
Serial.print("Starting SCD30 calibration...");
scd30.setAltitudeCompensation(config::altitude_above_sea_level);
scd30.setForcedRecalibrationFactor(config::co2_calibration_level);
Serial.println(" Done!");
Serial.println("Sensor calibrated.");
Serial.println("Sensor will now restart.");
LedEffects::showKITTWheel(color::green, 5);
FS_LIB.end();
ESP.restart();
}
}
#ifndef CO2_SENSOR_H_
#define CO2_SENSOR_H_
// The SCD30 from Sensirion is a high quality Nondispersive Infrared (NDIR) based CO₂ sensor capable of detecting 400 to 10000ppm with an accuracy of ±(30ppm+3%).
// https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library
#include "src/lib/SparkFun_SCD30_Arduino_Library/src/SparkFun_SCD30_Arduino_Library.h" // From: http://librarymanager/All#SparkFun_SCD30
#include "config.h"
#include "led_effects.h"
#include "csv_writer.h" // To close filesystem before restart.
#include <Wire.h>
namespace config {
extern uint16_t measurement_timestep; // [s] Value between 2 and 1800 (range for SCD30 sensor)
extern const bool auto_calibrate_sensor; // [true / false]
extern uint16_t co2_calibration_level; // [ppm]
extern const float temperature_offset; // [K] Sign isn't relevant.
}
namespace sensor {
extern SCD30 scd30;
extern int16_t co2;
extern float temperature;
extern float humidity;
extern String timestamp;
void initialize();
void startCalibrationProcess();
}
#endif
#ifndef CONFIG_H_INCLUDED
# define CONFIG_H_INCLUDED
// This file is a config template, and can be copied to config.h. Please don't save any important password in this template.
/**
* WIFI
*/
// Setting WIFI_SSID to "NO_WIFI" will disable WiFi completely, and all other dependent services (MQTT, HTTP, NTP, ...)
# define WIFI_SSID "NO_WIFI"
# define WIFI_PASSWORD "P4SSW0RD"
# define WIFI_TIMEOUT 20 // [s]
/**
* Sensor
*/
// How often should measurement be performed, and displayed?
//NOTE: SCD30 timer does not seem to be very precise. Variations may occur.
# define MEASUREMENT_TIMESTEP 60 // [s] Value between 2 and 1800 (range for SCD30 sensor)
// How often measurements should be sent to MQTT server?
// Probably a good idea to use a multiple of MEASUREMENT_TIMESTEP, so that averages can be calculated
// Set to 0 if you want to send values after each measurement
// # define SENDING_INTERVAL MEASUREMENT_TIMESTEP * 5 // [s]
# define SENDING_INTERVAL 300 // [s]
// How often should measurements be appended to CSV ?
// Probably a good idea to use a multiple of MEASUREMENT_TIMESTEP, so that averages can be calculated
// Set to 0 if you want to send values after each measurement
# define CSV_INTERVAL 300 // [s]
// Residual heat from CO2 sensor seems to be high enough to change the temperature reading. How much should it be offset?
// NOTE: Sign isn't relevant. The returned temperature will always be shifted down.
# define TEMPERATURE_OFFSET -3 // [K]
// Altitude above sea level
// Used for CO2 calibration
// here: Stuttgart, Schellingstr. 24. (Source: Google Earth)
# define ALTITUDE_ABOVE_SEA_LEVEL 260 // [m]
// The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
// Used for CO2 calibration
// here : measured concentration in Stuttgart
# define ATMOSPHERIC_CO2_CONCENTRATION 425 // [ppm]
// Should the sensor try to calibrate itself?
// Sensirion recommends 7 days of continuous readings with at least 1 hour a day of 'fresh air' for self-calibration to complete.
# define AUTO_CALIBRATE_SENSOR true // [true / false]
/**
* LEDs
*/
// LED brightness, which can vary between min and max brightness ("LED breathing")
// max_brightness should be between 0 and 255.
// min_brightness should be between 0 and max_brightness
# define MAX_BRIGHTNESS 255
# define MIN_BRIGHTNESS 60
/**
* WEB SERVER
* available at http://local_ip, with user HTTP_USER and password HTTP_PASSWORD
*/
# define HTTP // Comment or remove this line if you want to disable HTTP webserver
// Define empty strings in order to disable authentication, or remove the constants altogether.
# define HTTP_USER "co2ampel"
# define HTTP_PASSWORD "my_password"
/**
* MQTT SERVER
*/
# define MQTT // Comment or remove this line if you want to disable MQTT
/*
* If MQTT is enabled, co2ampel will publish data every SENDING_INTERVAL seconds.
* An MQTT subscriber can then get the data from the corresponding broker, either encrypted or unencrypted:
*
* ❯ mosquitto_sub -h 'test.mosquitto.org' -p 8883 -t 'CO2sensors/#' --cafile mosquitto.org.crt -v
* CO2sensors/ESPd05cc9 {"time":"2020-12-13 13:14:37+01", "co2":571, "temp":18.9, "rh":50.9}
* CO2sensors/ESPd05cc9 {"time":"2020-12-13 13:14:48+01", "co2":573, "temp":18.9, "rh":50.2}
* ...
*
* ❯ mosquitto_sub -h 'test.mosquitto.org' -t 'CO2sensors/#' -v
* CO2sensors/ESPd05cc9 {"time":"2020-12-13 13:15:09+01", "co2":568, "temp":18.9, "rh":50.1}
* CO2sensors/ESPd05cc9 {"time":"2020-12-13 13:15:20+01", "co2":572, "temp":18.9, "rh":50.3}
* ...
*/
/*
* Allow sensor to be configured over MQTT? Very useful for debugging. For example:
* mosquitto_pub -h 'test.mosquitto.org' -t 'CO2sensors/ESPe08dc9/control' -m 'timer 30'
* mosquitto_pub -h 'test.mosquitto.org' -t 'CO2sensors/ESPe08dc9/control' -m 'calibrate'
* mosquitto_pub -h 'test.mosquitto.org' -t 'CO2sensors/ESPe08dc9/control' -m 'reset'
*/
# define ALLOW_MQTT_COMMANDS false
# define MQTT_SERVER "test.mosquitto.org" // MQTT server URL or IP address
# define MQTT_PORT 8883
# define MQTT_USER ""
# define MQTT_PASSWORD ""
# define MQTT_SERVER_FINGERPRINT "EE BC 4B F8 57 E3 D3 E4 07 54 23 1E F0 C8 A1 56 E0 D3 1A 1C" // SHA1 for test.mosquitto.org
/**
* NTP
*/
# define NTP_SERVER "pool.ntp.org"
# define UTC_OFFSET_IN_SECONDS 3600 // [s] 3600 for UTC+1
/**
* Others
*/
# define BAUDS 115200 // Transmission rate
#endif
#include "csv_writer.h"
namespace config {
// Values should be defined in config.h
uint16_t csv_interval = CSV_INTERVAL; // [s]
}
namespace csv_writer {
unsigned long last_written_at = 0;
String last_successful_write = "";
#if defined(ESP8266)
/**
* SPECIFIC FUNCTIONS FOR LITTLEFS
*/
FSInfo fs_info;
bool mountFS() {
return LittleFS.begin(); // format if needed.
}
void updateFsInfo() {
FS_LIB.info(fs_info);
}
int getTotalSpace() {
return fs_info.totalBytes;
}
int getUsedSpace() {
return fs_info.usedBytes;
}
void showFilesystemContent() {
Dir dir = FS_LIB.openDir("/");
while (dir.next()) {
Serial.print(" ");
Serial.print(dir.fileName());
Serial.print(" - ");
if (dir.fileSize()) {
File f = dir.openFile("r");
Serial.println(f.size());
f.close();
} else {
Serial.println("0");
}
}
}
#endif
#if defined(ESP32)
/**
* SPECIFIC FUNCTIONS FOR SPIFFS
*/
bool mountFS() {
return SPIFFS.begin(true); // format if needed.
}
void updateFsInfo() {
// Nothing to do.
}
int getTotalSpace() {
return SPIFFS.totalBytes();
}
int getUsedSpace() {
return SPIFFS.usedBytes();
}
void showFilesystemContent() {
File root = SPIFFS.open("/");
File file = root.openNextFile();
while (file) {
Serial.print(" ");
Serial.print(file.name());
Serial.print(" - ");
Serial.println(file.size());
file = root.openNextFile();
}
}
#endif
const String filename = "/" + SENSOR_ID + ".csv";
int getAvailableSpace() {
//TODO : Check if too low?
return getTotalSpace() - getUsedSpace();
}
void initialize() {
Serial.print(F("Initializing FS..."));
if (mountFS()) {
Serial.println(F("done."));
} else {
Serial.println(F("fail."));
return;
}
updateFsInfo();
Serial.println(F("File system info:"));
Serial.print(F(" Total space : "));
Serial.print(getTotalSpace() / 1024);
Serial.println("kB");
Serial.print(F(" Used space : "));
Serial.print(getUsedSpace() / 1024);
Serial.println("kB");
Serial.print(F(" Available space: "));
Serial.print(getAvailableSpace() / 1024);
Serial.println("kB");
Serial.println();
// Open dir folder
Serial.println("Filesystem content:");
showFilesystemContent();
if (FS_LIB.exists(filename)) {
Serial.print(filename);
Serial.println(" has been found.");
}
}
File openOrCreate() {
File csv_file;
if (FS_LIB.exists(filename)) {
csv_file = FS_LIB.open(filename, "a+");
} else {
csv_file = FS_LIB.open(filename, "w");
csv_file.print(F("Sensor time;CO2 concentration;Temperature;Humidity\r\n"));
csv_file.print(F("YYYY-MM-DD HH:MM:SS+ZZ;ppm;degC;%\r\n"));
}
return csv_file;
}
void logIfTimeHasCome(const String &timeStamp, int16_t co2, float temp, float hum) {
unsigned long now = seconds();
//TODO: Write average since last CSV write?
if (now - last_written_at > config::csv_interval) {
last_written_at = now;
LedEffects::onBoardLEDOn();
File csv_file = openOrCreate();
char csv_line[42];
snprintf(csv_line, sizeof(csv_line), "%s;%d;%.1f;%.1f\r\n", timeStamp.c_str(), co2, temp, hum);
if (csv_file) {
size_t written_bytes = csv_file.print(csv_line);
csv_file.close();
if (written_bytes == 0) {
Serial.println(F("Nothing written. Disk full?"));
} else {
Serial.println(F("Wrote file content:"));
Serial.print(csv_line);
last_successful_write = ntp::getLocalTime();
}
updateFsInfo();
delay(50);
} else {
//NOTE: Can it ever happen that outfile is false?
Serial.println(F("Problem on create file!"));
}
LedEffects::onBoardLEDOff();
}
}
}
#ifndef CSV_WRITER_H_
#define CSV_WRITER_H_
#if defined(ESP8266)
# include <LittleFS.h>
# define FS_LIB LittleFS
#elif defined(ESP32)
# include <SPIFFS.h>
# define FS_LIB SPIFFS
#else
# error Board should be either ESP8266 or ESP832
#endif
#include "led_effects.h"
#include "config.h"
namespace config {
extern uint16_t csv_interval; // [s]
}
namespace csv_writer {
extern String last_successful_write;
void initialize();
void logIfTimeHasCome(const String &timeStamp, int16_t co2, float temp, float hum);
int getAvailableSpace();
extern const String filename;
}
#endif
#include "led_effects.h"
/*****************************************************************
* Configuration *
*****************************************************************/
namespace config {
const uint8_t max_brightness = MAX_BRIGHTNESS;
const uint8_t min_brightness = MIN_BRIGHTNESS;
const int kitt_tail = 3; // How many dimmer LEDs follow in K.I.T.T. wheel
}
/*****************************************************************
* Configuration (calculated from above values) *
*****************************************************************/
namespace config //TODO: Use a class instead. NightMode could then be another state.
{
const float average_brightness = 0.5 * (config::max_brightness + config::min_brightness);
const float brightness_amplitude = 0.5 * (config::max_brightness - config::min_brightness);
bool night_mode = false;
}
// Adafruit NeoPixel (Arduino library for controlling single-wire-based LED pixels and strip)
// https://github.com/adafruit/Adafruit_NeoPixel
// Documentation : http://adafruit.github.io/Adafruit_NeoPixel/html/class_adafruit___neo_pixel.html
// NeoPixels on GPIO05, aka D1 on ESP8266 or 5 on ESP32.
const int NEOPIXELS_PIN = 5;
const int NUMPIXELS = 12;
//NOTE: One value has been prepended, to make calculations easier and avoid out of bounds index.
const uint16_t CO2_TICKS[NUMPIXELS + 1] = { 0, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200 }; // [ppm]
// For a given LED, which color should be displayed? First LED will be pure green (hue angle 120°),
// last 4 LEDs will be pure red (hue angle 0°), LEDs in-between will be yellowish.
const uint16_t LED_HUES[NUMPIXELS] = { 21845, 19114, 16383, 13653, 10922, 8191, 5461, 2730, 0, 0, 0, 0 }; // [hue angle]
Adafruit_NeoPixel pixels(NUMPIXELS, NEOPIXELS_PIN, NEO_GRB + NEO_KHZ800);
namespace counter {
uint16_t wheel_offset = 0;
uint16_t kitt_offset = 0;
uint16_t breathing_offset = 0;
} // namespace counter
namespace LedEffects {
//On-board LED on D4, aka GPIO02
const int ONBOARD_LED_PIN = 2;
void setupOnBoardLED() {
pinMode(ONBOARD_LED_PIN, OUTPUT);
}
void onBoardLEDOff() {
digitalWrite(ONBOARD_LED_PIN, HIGH);
}
void onBoardLEDOn() {
digitalWrite(ONBOARD_LED_PIN, LOW);
}
void setupRing() {
pixels.begin();
pixels.setBrightness(config::max_brightness);
pixels.clear();
}
void toggleNightMode() {
config::night_mode = !config::night_mode;
if (config::night_mode) {
Serial.println(F("NIGHT MODE!"));
pixels.clear();
pixels.show();
} else {
Serial.println(F("DAY MODE!"));
}
}
//NOTE: basically one iteration of KITT wheel
void showWaitingLED(uint32_t color) {
delay(80);
if (config::night_mode) {
return;
}
pixels.clear();
for (int j = config::kitt_tail; j >= 0; j--) {
int ledNumber = abs((counter::kitt_offset - j + NUMPIXELS) % (2 * NUMPIXELS) - NUMPIXELS) % NUMPIXELS; // Triangular function
pixels.setPixelColor(ledNumber, color * pixels.gamma8(255 - j * 76) / 255);
}
pixels.show();
counter::kitt_offset += 1;
}
// Start K.I.T.T. led effect. Red color as default.
// Simulate a moving LED with tail. First LED starts at 0, and moves along a triangular function. The tail follows, with decreasing brightness.
// Takes approximately 1s for each direction.
void showKITTWheel(uint32_t color, uint16_t duration_s) {
pixels.setBrightness(config::max_brightness);
for (int i = 0; i < duration_s * NUMPIXELS; ++i) {
showWaitingLED(color);
}
}
/*
* For a given CO2 level and ledId, which brightness should be displayed? 0 for off, 255 for on. Something in-between for partial LED.
* For example, for 1500ppm, every LED between 0 and 7 (500 -> 1400ppm) should be on, LED at 8 (1600ppm) should be half-on.
*/
uint8_t getLedBrightness(uint16_t co2, int ledId) {
if (co2 >= CO2_TICKS[ledId + 1]) {
return 255;
} else {
if (2 * co2 >= CO2_TICKS[ledId] + CO2_TICKS[ledId + 1]) {
// Show partial LED if co2 more than halfway between ticks.
return 27; // Brightness isn't linear, so 27 / 255 looks much brighter than 10%
} else {
// LED off because co2 below previous tick
return 0;
}
}
}
/**
* Fills the whole ring with green, yellow, orange or black, depending on co2 input and CO2_TICKS.
*/
void displayCO2color(uint16_t co2) {
if (config::night_mode) {
return;
}
pixels.setBrightness(config::max_brightness);
for (int ledId = 0; ledId < NUMPIXELS; ++ledId) {
uint8_t brightness = getLedBrightness(co2, ledId);
pixels.setPixelColor(ledId, pixels.ColorHSV(LED_HUES[ledId], 255, brightness));
}
pixels.show();
}
void showRainbowWheel(int duration_s, uint16_t hue_increment) {
if (config::night_mode) {
return;
}
unsigned long t0 = seconds();
pixels.setBrightness(config::max_brightness);
while (seconds() < t0 + duration_s) {
for (int i = 0; i < NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.ColorHSV(i * 65535 / NUMPIXELS + counter::wheel_offset));
counter::wheel_offset += hue_increment;
}
pixels.show();
delay(10);
}
}
void redAlert() {
if (config::night_mode) {
onBoardLEDOn();
delay(500);
onBoardLEDOff();
delay(500);
return;
}
for (int i = 0; i < 10; i++) {
pixels.setBrightness(static_cast<int>(config::max_brightness * (1 - i * 0.1)));
delay(50);
pixels.fill(color::red);
pixels.show();
}
}
void breathe(int16_t co2) {
if (!config::night_mode) {
//TODO: use integer sine
pixels.setBrightness(
static_cast<int>(config::average_brightness
+ cos(counter::breathing_offset * 0.1) * config::brightness_amplitude));
pixels.show();
counter::breathing_offset += 1;
}
delay(co2 > 1600 ? 50 : 100); // faster breathing for higher CO2 values
}
/**
* Displays a complete blue circle, and starts removing LEDs one by one. Returns the number of remaining LEDs.
* Can be used for calibration, e.g. when countdown is 0. Does not work in night mode.
*/
int countdownToZero() {
if (config::night_mode) {
Serial.println("Night mode. Not doing anything.");
delay(1000); // Wait for a while, to avoid coming back to this function too many times when button is pressed.
return 1;
}
pixels.fill(color::blue);
pixels.show();
int countdown;
for (countdown = NUMPIXELS; countdown >= 0 && !digitalRead(0); countdown--) {
pixels.setPixelColor(countdown, color::black);
pixels.show();
Serial.println(countdown);
delay(500);
}
return countdown;
}
}
#ifndef LED_EFFECTS_H_INCLUDED
#define LED_EFFECTS_H_INCLUDED
#include <Arduino.h>
#include "util.h"
#include "config.h"
#include "src/lib/Adafruit_NeoPixel/Adafruit_NeoPixel.h"
namespace color {
const uint32_t red = 0xFF0000;
const uint32_t green = 0x00FF00;
const uint32_t blue = 0x0000FF;
const uint32_t black = 0x000000;
const uint32_t magenta = 0xFF00FF;
}
namespace LedEffects {
void setupOnBoardLED();
void onBoardLEDOff();
void onBoardLEDOn();
void toggleNightMode();
void setupRing();
void redAlert();
void breathe(int16_t co2);
int countdownToZero();
void showWaitingLED(uint32_t color);
void showKITTWheel(uint32_t color, uint16_t duration_s = 2);
void showRainbowWheel(int duration_s = 1, uint16_t hue_increment = 50);
void displayCO2color(uint16_t co2);
}
#endif
#include "mqtt.h"
namespace config {
// Values should be defined in config.h
uint16_t sending_interval = SENDING_INTERVAL; // [s]
//INFO: Listen to every CO2 sensor which is connected to the server:
// mosquitto_sub -h MQTT_SERVER -t 'CO2sensors/#' -p 443 --capath /etc/ssl/certs/ -u "MQTT_USER" -P "MQTT_PASSWORD" -v
const char *mqtt_server = MQTT_SERVER;
const uint16_t mqtt_port = MQTT_PORT;
const char *mqtt_user = MQTT_USER;
const char *mqtt_password = MQTT_PASSWORD;
const char *fingerprint PROGMEM = MQTT_SERVER_FINGERPRINT;
const bool allow_mqtt_commands = ALLOW_MQTT_COMMANDS;
const unsigned long wait_after_fail = 900; // [s] Wait 15 minutes after an MQTT connection fail, before trying again.
}
#if defined(ESP32)
# include <WiFiClientSecure.h>
#endif
WiFiClientSecure espClient;
PubSubClient mqttClient(espClient);
namespace mqtt {
unsigned long last_sent_at = 0;
unsigned long last_failed_at = 0;
String publish_topic;
const char *json_sensor_format;
String last_successful_publish = "";
void initialize(String &topic) {
json_sensor_format = PSTR("{\"time\":\"%s\", \"co2\":%d, \"temp\":%.1f, \"rh\":%.1f}");
publish_topic = topic;
#if defined(ESP8266)
espClient.setFingerprint(config::fingerprint); // not supported by ESP32
#endif
// mqttClient.setSocketTimeout(config::mqtt_timeout); //NOTE: somehow doesn't seem to have any effect on connect()
mqttClient.setServer(config::mqtt_server, config::mqtt_port);
}
void publish(const String &timestamp, int16_t co2, float temperature, float humidity) {
if (WiFi.status() == WL_CONNECTED && mqttClient.connected()) {
LedEffects::onBoardLEDOn();
Serial.print(F("Publishing MQTT message ... "));
char payload[75]; // Should be enough for json...
snprintf(payload, sizeof(payload), json_sensor_format, timestamp.c_str(), co2, temperature, humidity);
// Topic is the same as clientID. e.g. 'CO2sensors/ESP3d03da'
if (mqttClient.publish(publish_topic.c_str(), payload)) {
Serial.println("OK");
last_successful_publish = ntp::getLocalTime();
} else {
Serial.println("Failed.");
}
LedEffects::onBoardLEDOff();
}
}
void setTimer(String messageString) {
messageString.replace("timer ", "");
int timestep = messageString.toInt();
if (timestep >= 2 && timestep <= 1800) {
Serial.print(F("Setting Measurement Interval to : "));
Serial.print(timestep);
Serial.println("s.");
sensor::scd30.setMeasurementInterval(messageString.toInt());
config::measurement_timestep = messageString.toInt();
LedEffects::showKITTWheel(color::green, 1);
}
}
void setMQTTinterval(String messageString) {
messageString.replace("mqtt ", "");
config::sending_interval = messageString.toInt();
Serial.print(F("Setting Sending Interval to : "));
Serial.print(config::sending_interval);
Serial.println("s.");
LedEffects::showKITTWheel(color::green, 1);
}
void setCSVinterval(String messageString) {
messageString.replace("csv ", "");
config::csv_interval = messageString.toInt();
Serial.print(F("Setting CSV Interval to : "));
Serial.print(config::csv_interval);
Serial.println("s.");
LedEffects::showKITTWheel(color::green, 1);
}
void calibrateSensor(String messageString) {
messageString.replace("calibrate ", "");
long int calibrationLevel = messageString.toInt();
if (calibrationLevel >= 400 && calibrationLevel <= 2000) {
Serial.print(F("Force calibration, at "));
config::co2_calibration_level = messageString.toInt();
Serial.print(config::co2_calibration_level);
Serial.println(" ppm.");
sensor::startCalibrationProcess();
}
}
void setCO2forDebugging(String messageString) {
Serial.print(F("DEBUG. Setting CO2 to "));
messageString.replace("co2 ", "");
sensor::co2 = messageString.toInt();
Serial.println(sensor::co2);
}
void sendInfoAboutLocalNetwork() {
char info_topic[60]; // Should be enough for "CO2sensors/ESPd05cc9/info"
snprintf(info_topic, sizeof(info_topic), "%s/info", publish_topic.c_str());
char payload[75]; // Should be enough for info json...
const char *json_info_format = PSTR("{\"local_ip\":\"%s\", \"ssid\":\"%s\"}");
snprintf(payload, sizeof(payload), json_info_format, WiFi.localIP().toString().c_str(), WiFi.SSID().c_str());
mqttClient.publish(info_topic, payload);
}
/**
* Allows sensor to be controlled by commands over MQTT
*
* mosquitto_pub -h MQTT_SERVER -t 'CO2sensors/SENSOR_ID/control' -p 443 --capath /etc/ssl/certs/ -u "MQTT_USER" -P "MQTT_PASSWORD" -m "reset"
* mosquitto_pub -h MQTT_SERVER -t 'CO2sensors/SENSOR_ID/control' -p 443 --capath /etc/ssl/certs/ -u "MQTT_USER" -P "MQTT_PASSWORD" -m "timer 30"
* mosquitto_pub -h MQTT_SERVER -t 'CO2sensors/SENSOR_ID/control' -p 443 --capath /etc/ssl/certs/ -u "MQTT_USER" -P "MQTT_PASSWORD" -m "mqtt 900"
* mosquitto_pub -h MQTT_SERVER -t 'CO2sensors/SENSOR_ID/control' -p 443 --capath /etc/ssl/certs/ -u "MQTT_USER" -P "MQTT_PASSWORD" -m "calibrate 700"
*/
void controlSensorCallback(char *sub_topic, byte *message, unsigned int length) {
if (length == 0) {
return;
}
LedEffects::onBoardLEDOn();
Serial.print(F("Message arrived on topic: "));
Serial.print(sub_topic);
Serial.print(F(". Message: '"));
String messageString;
for (unsigned int i = 0; i < length; i++) {
Serial.print((char) message[i]);
messageString += (char) message[i];
}
Serial.println("'.");
if (messageString.startsWith("co2 ")) {
setCO2forDebugging(messageString);
} else if (messageString.startsWith("timer ")) {
setTimer(messageString);
} else if (messageString.startsWith("calibrate ")) {
calibrateSensor(messageString);
// config::atmospheric_co2_concentration
} else if (messageString.startsWith("mqtt ")) {
setMQTTinterval(messageString);
} else if (messageString.startsWith("csv ")) {
setCSVinterval(messageString);
} else if (messageString == "publish") {
Serial.println(F("Forcing MQTT publish now."));
publish(sensor::timestamp, sensor::co2, sensor::temperature, sensor::humidity);
} else if (messageString == "format_filesystem") {
FS_LIB.format();
LedEffects::showKITTWheel(color::blue, 2);
} else if (messageString == "night_mode") {
LedEffects::toggleNightMode();
} else if (messageString == "local_ip") {
sendInfoAboutLocalNetwork();
} else if (messageString == "reset") {
FS_LIB.end();
ESP.restart();
} else {
LedEffects::showKITTWheel(color::red, 1);
Serial.println(F("Message not supported. Doing nothing."));
}
delay(50);
LedEffects::onBoardLEDOff();
}
void reconnect() {
if (last_failed_at > 0 && seconds() - last_failed_at < config::wait_after_fail) {
// It failed less than wait_after_fail ago. Not even trying.
return;
}
if (WiFi.status() != WL_CONNECTED) { //NOTE: Sadly, WiFi.status is sometimes WL_CONNECTED even though it's really not
// No WIFI
return;
}
Serial.print(F("Attempting MQTT connection..."));
LedEffects::onBoardLEDOn();
// Wait for connection, at most 15s (default)
mqttClient.connect(publish_topic.c_str(), config::mqtt_user, config::mqtt_password);
LedEffects::onBoardLEDOff();
if (mqttClient.connected()) {
//TODO: Send local IP?
if (config::allow_mqtt_commands) {
char control_topic[60]; // Should be enough for "CO2sensors/ESPd05cc9/control"
snprintf(control_topic, sizeof(control_topic), "%s/control", publish_topic.c_str());
mqttClient.subscribe(control_topic);
mqttClient.setCallback(controlSensorCallback);
}
Serial.println(F(" Connected."));
last_failed_at = 0;
} else {
last_failed_at = seconds();
Serial.print(F(" Failed! Error code="));
Serial.print(mqttClient.state());
Serial.print(F(". Will try again in "));
Serial.print(config::wait_after_fail);
Serial.println("s.");
}
}
void publishIfTimeHasCome(const String &timeStamp, int16_t co2, float temp, float hum) {
// Send message via MQTT according to sending interval
unsigned long now = seconds();
//TODO: Send average since last MQTT message?
if (now - last_sent_at > config::sending_interval) {
last_sent_at = now;
publish(timeStamp, co2, temp, hum);
}
}
void keepConnection() {
// Keep MQTT connection
if (!mqttClient.connected()) {
reconnect();
}
mqttClient.loop();
}
}
#ifndef MQTT_H_INCLUDED
#define MQTT_H_INCLUDED
#include <Arduino.h>
#include "config.h"
#include "led_effects.h"
#include "csv_writer.h"
#include "co2_sensor.h"
#include "src/lib/PubSubClient/src/PubSubClient.h"
#include "wifi_util.h"
namespace config {
extern uint16_t sending_interval; // [s]
}
namespace mqtt {
extern String last_successful_publish;
void initialize(String &topic);
void keepConnection();
void publishIfTimeHasCome(const String &timeStamp, int16_t co2, float temp, float hum);
}
#endif
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter, extra scripting
; Upload options: custom port, speed and extra flags
; Library options: dependencies, extra library storages
;
; Please visit documentation for the other options and examples
; http://docs.platformio.org/page/projectconf.html
[platformio]
src_dir = ./
[env:esp8266]
platform = espressif8266
board = esp12e
framework = arduino
monitor_speed = 115200
[env:esp32]
platform = espressif32
board = ttgo-lora32-v1
framework = arduino
monitor_speed = 115200
/*!
* @file Adafruit_NeoPixel.cpp
*
* @mainpage Arduino Library for driving Adafruit NeoPixel addressable LEDs,
* FLORA RGB Smart Pixels and compatible devicess -- WS2811, WS2812, WS2812B,
* SK6812, etc.
*
* @section intro_sec Introduction
*
* This is the documentation for Adafruit's NeoPixel library for the
* Arduino platform, allowing a broad range of microcontroller boards
* (most AVR boards, many ARM devices, ESP8266 and ESP32, among others)
* to control Adafruit NeoPixels, FLORA RGB Smart Pixels and compatible
* devices -- WS2811, WS2812, WS2812B, SK6812, etc.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* @section author Author
*
* Written by Phil "Paint Your Dragon" Burgess for Adafruit Industries,
* with contributions by PJRC, Michael Miller and other members of the
* open source community.
*
* @section license License
*
* This file is part of the Adafruit_NeoPixel library.
*
* Adafruit_NeoPixel is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_NeoPixel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with NeoPixel. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#include "Adafruit_NeoPixel.h"
#if defined(TARGET_LPC1768)
#include <time.h>
#endif
#if defined(NRF52) || defined(NRF52_SERIES)
#include "nrf.h"
// Interrupt is only disabled if there is no PWM device available
// Note: Adafruit Bluefruit nrf52 does not use this option
//#define NRF52_DISABLE_INT
#endif
/*!
@brief NeoPixel constructor when length, pin and pixel type are known
at compile-time.
@param n Number of NeoPixels in strand.
@param p Arduino pin number which will drive the NeoPixel data in.
@param t Pixel type -- add together NEO_* constants defined in
Adafruit_NeoPixel.h, for example NEO_GRB+NEO_KHZ800 for
NeoPixels expecting an 800 KHz (vs 400 KHz) data stream
with color bytes expressed in green, red, blue order per
pixel.
@return Adafruit_NeoPixel object. Call the begin() function before use.
*/
Adafruit_NeoPixel::Adafruit_NeoPixel(uint16_t n, uint16_t p, neoPixelType t) :
begun(false), brightness(0), pixels(NULL), endTime(0) {
updateType(t);
updateLength(n);
setPin(p);
}
/*!
@brief "Empty" NeoPixel constructor when length, pin and/or pixel type
are not known at compile-time, and must be initialized later with
updateType(), updateLength() and setPin().
@return Adafruit_NeoPixel object. Call the begin() function before use.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax (length, pin,
type).
*/
Adafruit_NeoPixel::Adafruit_NeoPixel() :
#if defined(NEO_KHZ400)
is800KHz(true),
#endif
begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0), pixels(NULL),
rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) {
}
/*!
@brief Deallocate Adafruit_NeoPixel object, set data pin back to INPUT.
*/
Adafruit_NeoPixel::~Adafruit_NeoPixel() {
free(pixels);
if(pin >= 0) pinMode(pin, INPUT);
}
/*!
@brief Configure NeoPixel pin for output.
*/
void Adafruit_NeoPixel::begin(void) {
if(pin >= 0) {
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
begun = true;
}
/*!
@brief Change the length of a previously-declared Adafruit_NeoPixel
strip object. Old data is deallocated and new data is cleared.
Pin number and pixel format are unchanged.
@param n New length of strip, in pixels.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax (length, pin,
type).
*/
void Adafruit_NeoPixel::updateLength(uint16_t n) {
free(pixels); // Free existing data (if any)
// Allocate new data -- note: ALL PIXELS ARE CLEARED
numBytes = n * ((wOffset == rOffset) ? 3 : 4);
if((pixels = (uint8_t *)malloc(numBytes))) {
memset(pixels, 0, numBytes);
numLEDs = n;
} else {
numLEDs = numBytes = 0;
}
}
/*!
@brief Change the pixel format of a previously-declared
Adafruit_NeoPixel strip object. If format changes from one of
the RGB variants to an RGBW variant (or RGBW to RGB), the old
data will be deallocated and new data is cleared. Otherwise,
the old data will remain in RAM and is not reordered to the
new format, so it's advisable to follow up with clear().
@param t Pixel type -- add together NEO_* constants defined in
Adafruit_NeoPixel.h, for example NEO_GRB+NEO_KHZ800 for
NeoPixels expecting an 800 KHz (vs 400 KHz) data stream
with color bytes expressed in green, red, blue order per
pixel.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax
(length, pin, type).
*/
void Adafruit_NeoPixel::updateType(neoPixelType t) {
bool oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
wOffset = (t >> 6) & 0b11; // See notes in header file
rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
gOffset = (t >> 2) & 0b11;
bOffset = t & 0b11;
#if defined(NEO_KHZ400)
is800KHz = (t < 256); // 400 KHz flag is 1<<8
#endif
// If bytes-per-pixel has changed (and pixel data was previously
// allocated), re-allocate to new size. Will clear any data.
if(pixels) {
bool newThreeBytesPerPixel = (wOffset == rOffset);
if(newThreeBytesPerPixel != oldThreeBytesPerPixel) updateLength(numLEDs);
}
}
#if defined(ESP8266)
// ESP8266 show() is external to enforce ICACHE_RAM_ATTR execution
extern "C" void ICACHE_RAM_ATTR espShow(
uint16_t pin, uint8_t *pixels, uint32_t numBytes, uint8_t type);
#elif defined(ESP32)
extern "C" void espShow(
uint16_t pin, uint8_t *pixels, uint32_t numBytes, uint8_t type);
#endif // ESP8266
#if defined(K210)
#define KENDRYTE_K210 1
#endif
#if defined(KENDRYTE_K210)
extern "C" void k210Show(
uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz);
#endif //KENDRYTE_K210
/*!
@brief Transmit pixel data in RAM to NeoPixels.
@note On most architectures, interrupts are temporarily disabled in
order to achieve the correct NeoPixel signal timing. This means
that the Arduino millis() and micros() functions, which require
interrupts, will lose small intervals of time whenever this
function is called (about 30 microseconds per RGB pixel, 40 for
RGBW pixels). There's no easy fix for this, but a few
specialized alternative or companion libraries exist that use
very device-specific peripherals to work around it.
*/
void Adafruit_NeoPixel::show(void) {
if(!pixels) return;
// Data latch = 300+ microsecond pause in the output stream. Rather than
// put a delay at the end of the function, the ending time is noted and
// the function will simply hold off (if needed) on issuing the
// subsequent round of data until the latch time has elapsed. This
// allows the mainline code to start generating the next frame of data
// rather than stalling for the latch.
while(!canShow());
// endTime is a private member (rather than global var) so that multiple
// instances on different pins can be quickly issued in succession (each
// instance doesn't delay the next).
// In order to make this code runtime-configurable to work with any pin,
// SBI/CBI instructions are eschewed in favor of full PORT writes via the
// OUT or ST instructions. It relies on two facts: that peripheral
// functions (such as PWM) take precedence on output pins, so our PORT-
// wide writes won't interfere, and that interrupts are globally disabled
// while data is being issued to the LEDs, so no other code will be
// accessing the PORT. The code takes an initial 'snapshot' of the PORT
// state, computes 'pin high' and 'pin low' values, and writes these back
// to the PORT register as needed.
// NRF52 may use PWM + DMA (if available), may not need to disable interrupt
#if !( defined(NRF52) || defined(NRF52_SERIES) )
noInterrupts(); // Need 100% focus on instruction timing
#endif
#if defined(__AVR__)
// AVR MCUs -- ATmega & ATtiny (no XMEGA) ---------------------------------
volatile uint16_t
i = numBytes; // Loop counter
volatile uint8_t
*ptr = pixels, // Pointer to next byte
b = *ptr++, // Current byte value
hi, // PORT w/output bit set high
lo; // PORT w/output bit set low
// Hand-tuned assembly code issues data to the LED drivers at a specific
// rate. There's separate code for different CPU speeds (8, 12, 16 MHz)
// for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers. The
// datastream timing for the LED drivers allows a little wiggle room each
// way (listed in the datasheets), so the conditions for compiling each
// case are set up for a range of frequencies rather than just the exact
// 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on
// devices (e.g. 16.5 MHz DigiSpark). The ranges were arrived at based
// on the datasheet figures and have not been extensively tested outside
// the canonical 8/12/16 MHz speeds; there's no guarantee these will work
// close to the extremes (or possibly they could be pushed further).
// Keep in mind only one CPU speed case actually gets compiled; the
// resulting program isn't as massive as it might look from source here.
// 8 MHz(ish) AVR ---------------------------------------------------------
#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL)
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
volatile uint8_t n1, n2 = 0; // First, next bits out
// Squeezing an 800 KHz stream out of an 8 MHz chip requires code
// specific to each PORT register.
// 10 instruction clocks per bit: HHxxxxxLLL
// OUT instructions: ^ ^ ^ (T=0,2,7)
// PORTD OUTPUT ----------------------------------------------------
#if defined(PORTD)
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
if(port == &PORTD) {
#endif // defined(PORTB/C/F)
hi = PORTD | pinMask;
lo = PORTD & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
// Dirty trick: RJMPs proceeding to the next instruction are used
// to delay two clock cycles in one instruction word (rather than
// using two NOPs). This was necessary in order to squeeze the
// loop down to exactly 64 words -- the maximum possible for a
// relative branch.
asm volatile(
"headD:" "\n\t" // Clk Pseudocode
// Bit 7:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 6" "\n\t" // 1-2 if(b & 0x40)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 6:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 5" "\n\t" // 1-2 if(b & 0x20)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 5:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 4" "\n\t" // 1-2 if(b & 0x10)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 4:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 3" "\n\t" // 1-2 if(b & 0x08)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 3:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 2" "\n\t" // 1-2 if(b & 0x04)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 2:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 1" "\n\t" // 1-2 if(b & 0x02)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 1:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 0" "\n\t" // 1-2 if(b & 0x01)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"sbiw %[count], 1" "\n\t" // 2 i-- (don't act on Z flag yet)
// Bit 0:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"brne headD" "\n" // 2 while(i) (Z flag set above)
: [byte] "+r" (b),
[n1] "+r" (n1),
[n2] "+r" (n2),
[count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTD)),
[ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
} else // other PORT(s)
#endif // defined(PORTB/C/F)
#endif // defined(PORTD)
// PORTB OUTPUT ----------------------------------------------------
#if defined(PORTB)
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
if(port == &PORTB) {
#endif // defined(PORTD/C/F)
// Same as above, just switched to PORTB and stripped of comments.
hi = PORTB | pinMask;
lo = PORTB & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headB:" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 6" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 5" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 4" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 3" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 2" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 1" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 0" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"brne headB" "\n"
: [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
}
#endif
#if defined(PORTC) || defined(PORTF)
else
#endif // defined(PORTC/F)
#endif // defined(PORTB)
// PORTC OUTPUT ----------------------------------------------------
#if defined(PORTC)
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
if(port == &PORTC) {
#endif // defined(PORTD/B/F)
// Same as above, just switched to PORTC and stripped of comments.
hi = PORTC | pinMask;
lo = PORTC & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headC:" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 6" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 5" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 4" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 3" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 2" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 1" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 0" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"brne headC" "\n"
: [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTC)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
}
#endif // defined(PORTD/B/F)
#if defined(PORTF)
else
#endif
#endif // defined(PORTC)
// PORTF OUTPUT ----------------------------------------------------
#if defined(PORTF)
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
if(port == &PORTF) {
#endif // defined(PORTD/B/C)
hi = PORTF | pinMask;
lo = PORTF & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headF:" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 6" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 5" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 4" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 3" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 2" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 1" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 0" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"brne headF" "\n"
: [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTF)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
}
#endif // defined(PORTD/B/C)
#endif // defined(PORTF)
#if defined(NEO_KHZ400)
} else { // end 800 KHz, do 400 KHz
// Timing is more relaxed; unrolling the inner loop for each bit is
// not necessary. Still using the peculiar RJMPs as 2X NOPs, not out
// of need but just to trim the code size down a little.
// This 400-KHz-datastream-on-8-MHz-CPU code is not quite identical
// to the 800-on-16 code later -- the hi/lo timing between WS2811 and
// WS2812 is not simply a 2:1 scale!
// 20 inst. clocks per bit: HHHHxxxxxxLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,4,10)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head20:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 6)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7)
"dec %[bit]" "\n\t" // 1 bit-- (T = 8)
"breq nextbyte20" "\n\t" // 1-2 if(bit == 0)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12)
"rjmp .+0" "\n\t" // 2 nop nop (T = 14)
"rjmp .+0" "\n\t" // 2 nop nop (T = 16)
"rjmp .+0" "\n\t" // 2 nop nop (T = 18)
"rjmp head20" "\n\t" // 2 -> head20 (next bit out)
"nextbyte20:" "\n\t" // (T = 10)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12)
"nop" "\n\t" // 1 nop (T = 13)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 14)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 16)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 18)
"brne head20" "\n" // 2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [hi] "r" (hi),
[lo] "r" (lo),
[ptr] "e" (ptr));
}
#endif // NEO_KHZ400
// 12 MHz(ish) AVR --------------------------------------------------------
#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL)
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
// In the 12 MHz case, an optimized 800 KHz datastream (no dead time
// between bytes) requires a PORT-specific loop similar to the 8 MHz
// code (but a little more relaxed in this case).
// 15 instruction clocks per bit: HHHHxxxxxxLLLLL
// OUT instructions: ^ ^ ^ (T=0,4,10)
volatile uint8_t next;
// PORTD OUTPUT ----------------------------------------------------
#if defined(PORTD)
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
if(port == &PORTD) {
#endif // defined(PORTB/C/F)
hi = PORTD | pinMask;
lo = PORTD & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Don't "optimize" the OUT calls into the bitTime subroutine;
// we're exploiting the RCALL and RET as 3- and 4-cycle NOPs!
asm volatile(
"headD:" "\n\t" // (T = 0)
"out %[port], %[hi]" "\n\t" // (T = 1)
"rcall bitTimeD" "\n\t" // Bit 7 (T = 15)
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 6
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 5
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 4
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 3
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 2
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 1
// Bit 0:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi (T = 1)
"rjmp .+0" "\n\t" // 2 nop nop (T = 3)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 5)
"out %[port] , %[next]" "\n\t" // 1 PORT = next (T = 6)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80) (T = 8)
"mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 9)
"nop" "\n\t" // 1 (T = 10)
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo (T = 11)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 13)
"brne headD" "\n\t" // 2 if(i != 0) -> (next byte)
"rjmp doneD" "\n\t"
"bitTimeD:" "\n\t" // nop nop nop (T = 4)
"out %[port], %[next]" "\n\t" // 1 PORT = next (T = 5)
"mov %[next], %[lo]" "\n\t" // 1 next = lo (T = 6)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 7)
"sbrc %[byte], 7" "\n\t" // 1-2 if(b & 0x80) (T = 8)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 9)
"nop" "\n\t" // 1 (T = 10)
"out %[port], %[lo]" "\n\t" // 1 PORT = lo (T = 11)
"ret" "\n\t" // 4 nop nop nop nop (T = 15)
"doneD:" "\n"
: [byte] "+r" (b),
[next] "+r" (next),
[count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTD)),
[ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
} else // other PORT(s)
#endif // defined(PORTB/C/F)
#endif // defined(PORTD)
// PORTB OUTPUT ----------------------------------------------------
#if defined(PORTB)
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
if(port == &PORTB) {
#endif // defined(PORTD/C/F)
hi = PORTB | pinMask;
lo = PORTB & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Same as above, just set for PORTB & stripped of comments
asm volatile(
"headB:" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port] , %[hi]" "\n\t"
"rjmp .+0" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"out %[port] , %[next]" "\n\t"
"mov %[next] , %[lo]" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[next] , %[hi]" "\n\t"
"nop" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"brne headB" "\n\t"
"rjmp doneB" "\n\t"
"bitTimeB:" "\n\t"
"out %[port], %[next]" "\n\t"
"mov %[next], %[lo]" "\n\t"
"rol %[byte]" "\n\t"
"sbrc %[byte], 7" "\n\t"
"mov %[next], %[hi]" "\n\t"
"nop" "\n\t"
"out %[port], %[lo]" "\n\t"
"ret" "\n\t"
"doneB:" "\n"
: [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
}
#endif
#if defined(PORTC) || defined(PORTF)
else
#endif // defined(PORTC/F)
#endif // defined(PORTB)
// PORTC OUTPUT ----------------------------------------------------
#if defined(PORTC)
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
if(port == &PORTC) {
#endif // defined(PORTD/B/F)
hi = PORTC | pinMask;
lo = PORTC & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Same as above, just set for PORTC & stripped of comments
asm volatile(
"headC:" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port] , %[hi]" "\n\t"
"rjmp .+0" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"out %[port] , %[next]" "\n\t"
"mov %[next] , %[lo]" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[next] , %[hi]" "\n\t"
"nop" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"brne headC" "\n\t"
"rjmp doneC" "\n\t"
"bitTimeC:" "\n\t"
"out %[port], %[next]" "\n\t"
"mov %[next], %[lo]" "\n\t"
"rol %[byte]" "\n\t"
"sbrc %[byte], 7" "\n\t"
"mov %[next], %[hi]" "\n\t"
"nop" "\n\t"
"out %[port], %[lo]" "\n\t"
"ret" "\n\t"
"doneC:" "\n"
: [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTC)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
}
#endif // defined(PORTD/B/F)
#if defined(PORTF)
else
#endif
#endif // defined(PORTC)
// PORTF OUTPUT ----------------------------------------------------
#if defined(PORTF)
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
if(port == &PORTF) {
#endif // defined(PORTD/B/C)
hi = PORTF | pinMask;
lo = PORTF & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Same as above, just set for PORTF & stripped of comments
asm volatile(
"headF:" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port] , %[hi]" "\n\t"
"rjmp .+0" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"out %[port] , %[next]" "\n\t"
"mov %[next] , %[lo]" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[next] , %[hi]" "\n\t"
"nop" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"brne headF" "\n\t"
"rjmp doneC" "\n\t"
"bitTimeC:" "\n\t"
"out %[port], %[next]" "\n\t"
"mov %[next], %[lo]" "\n\t"
"rol %[byte]" "\n\t"
"sbrc %[byte], 7" "\n\t"
"mov %[next], %[hi]" "\n\t"
"nop" "\n\t"
"out %[port], %[lo]" "\n\t"
"ret" "\n\t"
"doneC:" "\n"
: [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTF)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
}
#endif // defined(PORTD/B/C)
#endif // defined(PORTF)
#if defined(NEO_KHZ400)
} else { // 400 KHz
// 30 instruction clocks per bit: HHHHHHxxxxxxxxxLLLLLLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,6,15)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head30:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"rjmp .+0" "\n\t" // 2 nop nop (T = 6)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 8)
"rjmp .+0" "\n\t" // 2 nop nop (T = 10)
"rjmp .+0" "\n\t" // 2 nop nop (T = 12)
"rjmp .+0" "\n\t" // 2 nop nop (T = 14)
"nop" "\n\t" // 1 nop (T = 15)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 17)
"rjmp .+0" "\n\t" // 2 nop nop (T = 19)
"dec %[bit]" "\n\t" // 1 bit-- (T = 20)
"breq nextbyte30" "\n\t" // 1-2 if(bit == 0)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 22)
"rjmp .+0" "\n\t" // 2 nop nop (T = 24)
"rjmp .+0" "\n\t" // 2 nop nop (T = 26)
"rjmp .+0" "\n\t" // 2 nop nop (T = 28)
"rjmp head30" "\n\t" // 2 -> head30 (next bit out)
"nextbyte30:" "\n\t" // (T = 22)
"nop" "\n\t" // 1 nop (T = 23)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 24)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 26)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 28)
"brne head30" "\n" // 1-2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [hi] "r" (hi),
[lo] "r" (lo),
[ptr] "e" (ptr));
}
#endif // NEO_KHZ400
// 16 MHz(ish) AVR --------------------------------------------------------
#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L)
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
// WS2811 and WS2812 have different hi/lo duty cycles; this is
// similar but NOT an exact copy of the prior 400-on-8 code.
// 20 inst. clocks per bit: HHHHHxxxxxxxxLLLLLLL
// ST instructions: ^ ^ ^ (T=0,5,13)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head20:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte], 7" "\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"dec %[bit]" "\n\t" // 1 bit-- (T = 5)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 7)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 8)
"breq nextbyte20" "\n\t" // 1-2 if(bit == 0) (from dec above)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10)
"rjmp .+0" "\n\t" // 2 nop nop (T = 12)
"nop" "\n\t" // 1 nop (T = 13)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15)
"nop" "\n\t" // 1 nop (T = 16)
"rjmp .+0" "\n\t" // 2 nop nop (T = 18)
"rjmp head20" "\n\t" // 2 -> head20 (next bit out)
"nextbyte20:" "\n\t" // (T = 10)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 11)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 13)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15)
"nop" "\n\t" // 1 nop (T = 16)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 18)
"brne head20" "\n" // 2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
#if defined(NEO_KHZ400)
} else { // 400 KHz
// The 400 KHz clock on 16 MHz MCU is the most 'relaxed' version.
// 40 inst. clocks per bit: HHHHHHHHxxxxxxxxxxxxLLLLLLLLLLLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,8,20)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head40:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128)
"mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"rjmp .+0" "\n\t" // 2 nop nop (T = 6)
"rjmp .+0" "\n\t" // 2 nop nop (T = 8)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 10)
"rjmp .+0" "\n\t" // 2 nop nop (T = 12)
"rjmp .+0" "\n\t" // 2 nop nop (T = 14)
"rjmp .+0" "\n\t" // 2 nop nop (T = 16)
"rjmp .+0" "\n\t" // 2 nop nop (T = 18)
"rjmp .+0" "\n\t" // 2 nop nop (T = 20)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 22)
"nop" "\n\t" // 1 nop (T = 23)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 24)
"dec %[bit]" "\n\t" // 1 bit-- (T = 25)
"breq nextbyte40" "\n\t" // 1-2 if(bit == 0)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 27)
"nop" "\n\t" // 1 nop (T = 28)
"rjmp .+0" "\n\t" // 2 nop nop (T = 30)
"rjmp .+0" "\n\t" // 2 nop nop (T = 32)
"rjmp .+0" "\n\t" // 2 nop nop (T = 34)
"rjmp .+0" "\n\t" // 2 nop nop (T = 36)
"rjmp .+0" "\n\t" // 2 nop nop (T = 38)
"rjmp head40" "\n\t" // 2 -> head40 (next bit out)
"nextbyte40:" "\n\t" // (T = 27)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 28)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 30)
"rjmp .+0" "\n\t" // 2 nop nop (T = 32)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 34)
"rjmp .+0" "\n\t" // 2 nop nop (T = 36)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 38)
"brne head40" "\n" // 1-2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
}
#endif // NEO_KHZ400
#else
#error "CPU SPEED NOT SUPPORTED"
#endif // end F_CPU ifdefs on __AVR__
// END AVR ----------------------------------------------------------------
#elif defined(__arm__)
// ARM MCUs -- Teensy 3.0, 3.1, LC, Arduino Due ---------------------------
#if defined(TEENSYDUINO) && defined(KINETISK) // Teensy 3.0, 3.1, 3.2, 3.5, 3.6
#define CYCLES_800_T0H (F_CPU / 4000000)
#define CYCLES_800_T1H (F_CPU / 1250000)
#define CYCLES_800 (F_CPU / 800000)
#define CYCLES_400_T0H (F_CPU / 2000000)
#define CYCLES_400_T1H (F_CPU / 833333)
#define CYCLES_400 (F_CPU / 400000)
uint8_t *p = pixels,
*end = p + numBytes, pix, mask;
volatile uint8_t *set = portSetRegister(pin),
*clr = portClearRegister(pin);
uint32_t cyc;
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
cyc = ARM_DWT_CYCCNT + CYCLES_800;
while(p < end) {
pix = *p++;
for(mask = 0x80; mask; mask >>= 1) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_800);
cyc = ARM_DWT_CYCCNT;
*set = 1;
if(pix & mask) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T1H);
} else {
while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T0H);
}
*clr = 1;
}
}
while(ARM_DWT_CYCCNT - cyc < CYCLES_800);
#if defined(NEO_KHZ400)
} else { // 400 kHz bitstream
cyc = ARM_DWT_CYCCNT + CYCLES_400;
while(p < end) {
pix = *p++;
for(mask = 0x80; mask; mask >>= 1) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_400);
cyc = ARM_DWT_CYCCNT;
*set = 1;
if(pix & mask) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T1H);
} else {
while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T0H);
}
*clr = 1;
}
}
while(ARM_DWT_CYCCNT - cyc < CYCLES_400);
}
#endif // NEO_KHZ400
#elif defined(TEENSYDUINO) && (defined(__IMXRT1052__) || defined(__IMXRT1062__))
#define CYCLES_800_T0H (F_CPU_ACTUAL / 4000000)
#define CYCLES_800_T1H (F_CPU_ACTUAL / 1250000)
#define CYCLES_800 (F_CPU_ACTUAL / 800000)
#define CYCLES_400_T0H (F_CPU_ACTUAL / 2000000)
#define CYCLES_400_T1H (F_CPU_ACTUAL / 833333)
#define CYCLES_400 (F_CPU_ACTUAL / 400000)
uint8_t *p = pixels,
*end = p + numBytes, pix, mask;
volatile uint32_t *set = portSetRegister(pin),
*clr = portClearRegister(pin);
uint32_t cyc,
msk = digitalPinToBitMask(pin);
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
cyc = ARM_DWT_CYCCNT + CYCLES_800;
while(p < end) {
pix = *p++;
for(mask = 0x80; mask; mask >>= 1) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_800);
cyc = ARM_DWT_CYCCNT;
*set = msk;
if(pix & mask) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T1H);
} else {
while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T0H);
}
*clr = msk;
}
}
while(ARM_DWT_CYCCNT - cyc < CYCLES_800);
#if defined(NEO_KHZ400)
} else { // 400 kHz bitstream
cyc = ARM_DWT_CYCCNT + CYCLES_400;
while(p < end) {
pix = *p++;
for(mask = 0x80; mask; mask >>= 1) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_400);
cyc = ARM_DWT_CYCCNT;
*set = msk;
if(pix & mask) {
while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T1H);
} else {
while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T0H);
}
*clr = msk;
}
}
while(ARM_DWT_CYCCNT - cyc < CYCLES_400);
}
#endif // NEO_KHZ400
#elif defined(TEENSYDUINO) && defined(__MKL26Z64__) // Teensy-LC
#if F_CPU == 48000000
uint8_t *p = pixels,
pix, count, dly,
bitmask = digitalPinToBitMask(pin);
volatile uint8_t *reg = portSetRegister(pin);
uint32_t num = numBytes;
asm volatile(
"L%=_begin:" "\n\t"
"ldrb %[pix], [%[p], #0]" "\n\t"
"lsl %[pix], #24" "\n\t"
"movs %[count], #7" "\n\t"
"L%=_loop:" "\n\t"
"lsl %[pix], #1" "\n\t"
"bcs L%=_loop_one" "\n\t"
"L%=_loop_zero:" "\n\t"
"strb %[bitmask], [%[reg], #0]" "\n\t"
"movs %[dly], #4" "\n\t"
"L%=_loop_delay_T0H:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_loop_delay_T0H" "\n\t"
"strb %[bitmask], [%[reg], #4]" "\n\t"
"movs %[dly], #13" "\n\t"
"L%=_loop_delay_T0L:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_loop_delay_T0L" "\n\t"
"b L%=_next" "\n\t"
"L%=_loop_one:" "\n\t"
"strb %[bitmask], [%[reg], #0]" "\n\t"
"movs %[dly], #13" "\n\t"
"L%=_loop_delay_T1H:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_loop_delay_T1H" "\n\t"
"strb %[bitmask], [%[reg], #4]" "\n\t"
"movs %[dly], #4" "\n\t"
"L%=_loop_delay_T1L:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_loop_delay_T1L" "\n\t"
"nop" "\n\t"
"L%=_next:" "\n\t"
"sub %[count], #1" "\n\t"
"bne L%=_loop" "\n\t"
"lsl %[pix], #1" "\n\t"
"bcs L%=_last_one" "\n\t"
"L%=_last_zero:" "\n\t"
"strb %[bitmask], [%[reg], #0]" "\n\t"
"movs %[dly], #4" "\n\t"
"L%=_last_delay_T0H:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_last_delay_T0H" "\n\t"
"strb %[bitmask], [%[reg], #4]" "\n\t"
"movs %[dly], #10" "\n\t"
"L%=_last_delay_T0L:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_last_delay_T0L" "\n\t"
"b L%=_repeat" "\n\t"
"L%=_last_one:" "\n\t"
"strb %[bitmask], [%[reg], #0]" "\n\t"
"movs %[dly], #13" "\n\t"
"L%=_last_delay_T1H:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_last_delay_T1H" "\n\t"
"strb %[bitmask], [%[reg], #4]" "\n\t"
"movs %[dly], #1" "\n\t"
"L%=_last_delay_T1L:" "\n\t"
"sub %[dly], #1" "\n\t"
"bne L%=_last_delay_T1L" "\n\t"
"nop" "\n\t"
"L%=_repeat:" "\n\t"
"add %[p], #1" "\n\t"
"sub %[num], #1" "\n\t"
"bne L%=_begin" "\n\t"
"L%=_done:" "\n\t"
: [p] "+r" (p),
[pix] "=&r" (pix),
[count] "=&r" (count),
[dly] "=&r" (dly),
[num] "+r" (num)
: [bitmask] "r" (bitmask),
[reg] "r" (reg)
);
#else
#error "Sorry, only 48 MHz is supported, please set Tools > CPU Speed to 48 MHz"
#endif // F_CPU == 48000000
// Begin of support for nRF52 based boards -------------------------
#elif defined(NRF52) || defined(NRF52_SERIES)
// [[[Begin of the Neopixel NRF52 EasyDMA implementation
// by the Hackerspace San Salvador]]]
// This technique uses the PWM peripheral on the NRF52. The PWM uses the
// EasyDMA feature included on the chip. This technique loads the duty
// cycle configuration for each cycle when the PWM is enabled. For this
// to work we need to store a 16 bit configuration for each bit of the
// RGB(W) values in the pixel buffer.
// Comparator values for the PWM were hand picked and are guaranteed to
// be 100% organic to preserve freshness and high accuracy. Current
// parameters are:
// * PWM Clock: 16Mhz
// * Minimum step time: 62.5ns
// * Time for zero in high (T0H): 0.31ms
// * Time for one in high (T1H): 0.75ms
// * Cycle time: 1.25us
// * Frequency: 800Khz
// For 400Khz we just double the calculated times.
// ---------- BEGIN Constants for the EasyDMA implementation -----------
// The PWM starts the duty cycle in LOW. To start with HIGH we
// need to set the 15th bit on each register.
// WS2812 (rev A) timing is 0.35 and 0.7us
//#define MAGIC_T0H 5UL | (0x8000) // 0.3125us
//#define MAGIC_T1H 12UL | (0x8000) // 0.75us
// WS2812B (rev B) timing is 0.4 and 0.8 us
#define MAGIC_T0H 6UL | (0x8000) // 0.375us
#define MAGIC_T1H 13UL | (0x8000) // 0.8125us
// WS2811 (400 khz) timing is 0.5 and 1.2
#define MAGIC_T0H_400KHz 8UL | (0x8000) // 0.5us
#define MAGIC_T1H_400KHz 19UL | (0x8000) // 1.1875us
// For 400Khz, we double value of CTOPVAL
#define CTOPVAL 20UL // 1.25us
#define CTOPVAL_400KHz 40UL // 2.5us
// ---------- END Constants for the EasyDMA implementation -------------
//
// If there is no device available an alternative cycle-counter
// implementation is tried.
// The nRF52 runs with a fixed clock of 64Mhz. The alternative
// implementation is the same as the one used for the Teensy 3.0/1/2 but
// with the Nordic SDK HAL & registers syntax.
// The number of cycles was hand picked and is guaranteed to be 100%
// organic to preserve freshness and high accuracy.
// ---------- BEGIN Constants for cycle counter implementation ---------
#define CYCLES_800_T0H 18 // ~0.36 uS
#define CYCLES_800_T1H 41 // ~0.76 uS
#define CYCLES_800 71 // ~1.25 uS
#define CYCLES_400_T0H 26 // ~0.50 uS
#define CYCLES_400_T1H 70 // ~1.26 uS
#define CYCLES_400 156 // ~2.50 uS
// ---------- END of Constants for cycle counter implementation --------
// To support both the SoftDevice + Neopixels we use the EasyDMA
// feature from the NRF25. However this technique implies to
// generate a pattern and store it on the memory. The actual
// memory used in bytes corresponds to the following formula:
// totalMem = numBytes*8*2+(2*2)
// The two additional bytes at the end are needed to reset the
// sequence.
//
// If there is not enough memory, we will fall back to cycle counter
// using DWT
uint32_t pattern_size = numBytes*8*sizeof(uint16_t)+2*sizeof(uint16_t);
uint16_t* pixels_pattern = NULL;
NRF_PWM_Type* pwm = NULL;
// Try to find a free PWM device, which is not enabled
// and has no connected pins
NRF_PWM_Type* PWM[] = {
NRF_PWM0, NRF_PWM1, NRF_PWM2
#if defined(NRF_PWM3)
,NRF_PWM3
#endif
};
for(unsigned int device = 0; device < (sizeof(PWM)/sizeof(PWM[0])); device++) {
if( (PWM[device]->ENABLE == 0) &&
(PWM[device]->PSEL.OUT[0] & PWM_PSEL_OUT_CONNECT_Msk) &&
(PWM[device]->PSEL.OUT[1] & PWM_PSEL_OUT_CONNECT_Msk) &&
(PWM[device]->PSEL.OUT[2] & PWM_PSEL_OUT_CONNECT_Msk) &&
(PWM[device]->PSEL.OUT[3] & PWM_PSEL_OUT_CONNECT_Msk)
) {
pwm = PWM[device];
break;
}
}
// only malloc if there is PWM device available
if ( pwm != NULL ) {
#if defined(ARDUINO_NRF52_ADAFRUIT) // use thread-safe malloc
pixels_pattern = (uint16_t *) rtos_malloc(pattern_size);
#else
pixels_pattern = (uint16_t *) malloc(pattern_size);
#endif
}
// Use the identified device to choose the implementation
// If a PWM device is available use DMA
if( (pixels_pattern != NULL) && (pwm != NULL) ) {
uint16_t pos = 0; // bit position
for(uint16_t n=0; n<numBytes; n++) {
uint8_t pix = pixels[n];
for(uint8_t mask=0x80; mask>0; mask >>= 1) {
#if defined(NEO_KHZ400)
if( !is800KHz ) {
pixels_pattern[pos] = (pix & mask) ? MAGIC_T1H_400KHz : MAGIC_T0H_400KHz;
}else
#endif
{
pixels_pattern[pos] = (pix & mask) ? MAGIC_T1H : MAGIC_T0H;
}
pos++;
}
}
// Zero padding to indicate the end of que sequence
pixels_pattern[pos++] = 0 | (0x8000); // Seq end
pixels_pattern[pos++] = 0 | (0x8000); // Seq end
// Set the wave mode to count UP
pwm->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos);
// Set the PWM to use the 16MHz clock
pwm->PRESCALER = (PWM_PRESCALER_PRESCALER_DIV_1 << PWM_PRESCALER_PRESCALER_Pos);
// Setting of the maximum count
// but keeping it on 16Mhz allows for more granularity just
// in case someone wants to do more fine-tuning of the timing.
#if defined(NEO_KHZ400)
if( !is800KHz ) {
pwm->COUNTERTOP = (CTOPVAL_400KHz << PWM_COUNTERTOP_COUNTERTOP_Pos);
}else
#endif
{
pwm->COUNTERTOP = (CTOPVAL << PWM_COUNTERTOP_COUNTERTOP_Pos);
}
// Disable loops, we want the sequence to repeat only once
pwm->LOOP = (PWM_LOOP_CNT_Disabled << PWM_LOOP_CNT_Pos);
// On the "Common" setting the PWM uses the same pattern for the
// for supported sequences. The pattern is stored on half-word
// of 16bits
pwm->DECODER = (PWM_DECODER_LOAD_Common << PWM_DECODER_LOAD_Pos) |
(PWM_DECODER_MODE_RefreshCount << PWM_DECODER_MODE_Pos);
// Pointer to the memory storing the patter
pwm->SEQ[0].PTR = (uint32_t)(pixels_pattern) << PWM_SEQ_PTR_PTR_Pos;
// Calculation of the number of steps loaded from memory.
pwm->SEQ[0].CNT = (pattern_size/sizeof(uint16_t)) << PWM_SEQ_CNT_CNT_Pos;
// The following settings are ignored with the current config.
pwm->SEQ[0].REFRESH = 0;
pwm->SEQ[0].ENDDELAY = 0;
// The Neopixel implementation is a blocking algorithm. DMA
// allows for non-blocking operation. To "simulate" a blocking
// operation we enable the interruption for the end of sequence
// and block the execution thread until the event flag is set by
// the peripheral.
// pwm->INTEN |= (PWM_INTEN_SEQEND0_Enabled<<PWM_INTEN_SEQEND0_Pos);
// PSEL must be configured before enabling PWM
#if defined(ARDUINO_ARCH_NRF52840)
pwm->PSEL.OUT[0] = g_APinDescription[pin].name;
#else
pwm->PSEL.OUT[0] = g_ADigitalPinMap[pin];
#endif
// Enable the PWM
pwm->ENABLE = 1;
// After all of this and many hours of reading the documentation
// we are ready to start the sequence...
pwm->EVENTS_SEQEND[0] = 0;
pwm->TASKS_SEQSTART[0] = 1;
// But we have to wait for the flag to be set.
while(!pwm->EVENTS_SEQEND[0])
{
#if defined(ARDUINO_NRF52_ADAFRUIT) || defined(ARDUINO_ARCH_NRF52840)
yield();
#endif
}
// Before leave we clear the flag for the event.
pwm->EVENTS_SEQEND[0] = 0;
// We need to disable the device and disconnect
// all the outputs before leave or the device will not
// be selected on the next call.
// TODO: Check if disabling the device causes performance issues.
pwm->ENABLE = 0;
pwm->PSEL.OUT[0] = 0xFFFFFFFFUL;
#if defined(ARDUINO_NRF52_ADAFRUIT) // use thread-safe free
rtos_free(pixels_pattern);
#else
free(pixels_pattern);
#endif
}// End of DMA implementation
// ---------------------------------------------------------------------
else{
#ifndef ARDUINO_ARCH_NRF52840
// Fall back to DWT
#if defined(ARDUINO_NRF52_ADAFRUIT)
// Bluefruit Feather 52 uses freeRTOS
// Critical Section is used since it does not block SoftDevice execution
taskENTER_CRITICAL();
#elif defined(NRF52_DISABLE_INT)
// If you are using the Bluetooth SoftDevice we advise you to not disable
// the interrupts. Disabling the interrupts even for short periods of time
// causes the SoftDevice to stop working.
// Disable the interrupts only in cases where you need high performance for
// the LEDs and if you are not using the EasyDMA feature.
__disable_irq();
#endif
NRF_GPIO_Type* nrf_port = (NRF_GPIO_Type*) digitalPinToPort(pin);
uint32_t pinMask = digitalPinToBitMask(pin);
uint32_t CYCLES_X00 = CYCLES_800;
uint32_t CYCLES_X00_T1H = CYCLES_800_T1H;
uint32_t CYCLES_X00_T0H = CYCLES_800_T0H;
#if defined(NEO_KHZ400)
if( !is800KHz )
{
CYCLES_X00 = CYCLES_400;
CYCLES_X00_T1H = CYCLES_400_T1H;
CYCLES_X00_T0H = CYCLES_400_T0H;
}
#endif
// Enable DWT in debug core
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
// Tries to re-send the frame if is interrupted by the SoftDevice.
while(1) {
uint8_t *p = pixels;
uint32_t cycStart = DWT->CYCCNT;
uint32_t cyc = 0;
for(uint16_t n=0; n<numBytes; n++) {
uint8_t pix = *p++;
for(uint8_t mask = 0x80; mask; mask >>= 1) {
while(DWT->CYCCNT - cyc < CYCLES_X00);
cyc = DWT->CYCCNT;
nrf_port->OUTSET |= pinMask;
if(pix & mask) {
while(DWT->CYCCNT - cyc < CYCLES_X00_T1H);
} else {
while(DWT->CYCCNT - cyc < CYCLES_X00_T0H);
}
nrf_port->OUTCLR |= pinMask;
}
}
while(DWT->CYCCNT - cyc < CYCLES_X00);
// If total time longer than 25%, resend the whole data.
// Since we are likely to be interrupted by SoftDevice
if ( (DWT->CYCCNT - cycStart) < ( 8*numBytes*((CYCLES_X00*5)/4) ) ) {
break;
}
// re-send need 300us delay
delayMicroseconds(300);
}
// Enable interrupts again
#if defined(ARDUINO_NRF52_ADAFRUIT)
taskEXIT_CRITICAL();
#elif defined(NRF52_DISABLE_INT)
__enable_irq();
#endif
#endif
}
// END of NRF52 implementation
#elif defined (__SAMD21E17A__) || defined(__SAMD21G18A__) || defined(__SAMD21E18A__) || defined(__SAMD21J18A__) // Arduino Zero, Gemma/Trinket M0, SODAQ Autonomo and others
// Tried this with a timer/counter, couldn't quite get adequate
// resolution. So yay, you get a load of goofball NOPs...
uint8_t *ptr, *end, p, bitMask, portNum;
uint32_t pinMask;
portNum = g_APinDescription[pin].ulPort;
pinMask = 1ul << g_APinDescription[pin].ulPin;
ptr = pixels;
end = ptr + numBytes;
p = *ptr++;
bitMask = 0x80;
volatile uint32_t *set = &(PORT->Group[portNum].OUTSET.reg),
*clr = &(PORT->Group[portNum].OUTCLR.reg);
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
for(;;) {
*set = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;");
if(p & bitMask) {
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop;");
*clr = pinMask;
} else {
*clr = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop;");
}
if(bitMask >>= 1) {
asm("nop; nop; nop; nop; nop; nop; nop; nop; nop;");
} else {
if(ptr >= end) break;
p = *ptr++;
bitMask = 0x80;
}
}
#if defined(NEO_KHZ400)
} else { // 400 KHz bitstream
for(;;) {
*set = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop; nop; nop; nop;");
if(p & bitMask) {
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop;");
*clr = pinMask;
} else {
*clr = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop;");
}
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;");
if(bitMask >>= 1) {
asm("nop; nop; nop; nop; nop; nop; nop;");
} else {
if(ptr >= end) break;
p = *ptr++;
bitMask = 0x80;
}
}
}
#endif
#elif defined (__SAMD51__) // M4
uint8_t *ptr, *end, p, bitMask, portNum, bit;
uint32_t pinMask;
portNum = g_APinDescription[pin].ulPort;
pinMask = 1ul << g_APinDescription[pin].ulPin;
ptr = pixels;
end = ptr + numBytes;
p = *ptr++;
bitMask = 0x80;
volatile uint32_t *set = &(PORT->Group[portNum].OUTSET.reg),
*clr = &(PORT->Group[portNum].OUTCLR.reg);
// SAMD51 overclock-compatible timing is only a mild abomination.
// It uses SysTick for a consistent clock reference regardless of
// optimization / cache settings. That's the good news. The bad news,
// since SysTick->VAL is a volatile type it's slow to access...and then,
// with the SysTick interval that Arduino sets up (1 ms), this would
// require a subtract and MOD operation for gauging elapsed time, and
// all taken in combination that lacks adequate temporal resolution
// for NeoPixel timing. So a kind of horrible thing is done here...
// since interrupts are turned off anyway and it's generally accepted
// by now that we're gonna lose track of time in the NeoPixel lib,
// the SysTick timer is reconfigured for a period matching the NeoPixel
// bit timing (either 800 or 400 KHz) and we watch SysTick->VAL very
// closely (just a threshold, no subtract or MOD or anything) and that
// seems to work just well enough. When finished, the SysTick
// peripheral is set back to its original state.
uint32_t t0, t1, top, ticks,
saveLoad = SysTick->LOAD, saveVal = SysTick->VAL;
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
top = (uint32_t)(F_CPU * 0.00000125); // Bit hi + lo = 1.25 uS
t0 = top - (uint32_t)(F_CPU * 0.00000040); // 0 = 0.4 uS hi
t1 = top - (uint32_t)(F_CPU * 0.00000080); // 1 = 0.8 uS hi
#if defined(NEO_KHZ400)
} else { // 400 KHz bitstream
top = (uint32_t)(F_CPU * 0.00000250); // Bit hi + lo = 2.5 uS
t0 = top - (uint32_t)(F_CPU * 0.00000050); // 0 = 0.5 uS hi
t1 = top - (uint32_t)(F_CPU * 0.00000120); // 1 = 1.2 uS hi
}
#endif
SysTick->LOAD = top; // Config SysTick for NeoPixel bit freq
SysTick->VAL = top; // Set to start value (counts down)
(void)SysTick->VAL; // Dummy read helps sync up 1st bit
for(;;) {
*set = pinMask; // Set output high
ticks = (p & bitMask) ? t1 : t0; // SysTick threshold,
while(SysTick->VAL > ticks); // wait for it
*clr = pinMask; // Set output low
if(!(bitMask >>= 1)) { // Next bit for this byte...done?
if(ptr >= end) break; // If last byte sent, exit loop
p = *ptr++; // Fetch next byte
bitMask = 0x80; // Reset bitmask
}
while(SysTick->VAL <= ticks); // Wait for rollover to 'top'
}
SysTick->LOAD = saveLoad; // Restore SysTick rollover to 1 ms
SysTick->VAL = saveVal; // Restore SysTick value
#elif defined (ARDUINO_STM32_FEATHER) // FEATHER WICED (120MHz)
// Tried this with a timer/counter, couldn't quite get adequate
// resolution. So yay, you get a load of goofball NOPs...
uint8_t *ptr, *end, p, bitMask;
uint32_t pinMask;
pinMask = BIT(PIN_MAP[pin].gpio_bit);
ptr = pixels;
end = ptr + numBytes;
p = *ptr++;
bitMask = 0x80;
volatile uint16_t *set = &(PIN_MAP[pin].gpio_device->regs->BSRRL);
volatile uint16_t *clr = &(PIN_MAP[pin].gpio_device->regs->BSRRH);
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
for(;;) {
if(p & bitMask) { // ONE
// High 800ns
*set = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop;");
// Low 450ns
*clr = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop;");
} else { // ZERO
// High 400ns
*set = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop;");
// Low 850ns
*clr = pinMask;
asm("nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop; nop; nop; nop; nop;"
"nop; nop; nop; nop;");
}
if(bitMask >>= 1) {
// Move on to the next pixel
asm("nop;");
} else {
if(ptr >= end) break;
p = *ptr++;
bitMask = 0x80;
}
}
#if defined(NEO_KHZ400)
} else { // 400 KHz bitstream
// ToDo!
}
#endif
#elif defined(TARGET_LPC1768)
uint8_t *ptr, *end, p, bitMask;
ptr = pixels;
end = ptr + numBytes;
p = *ptr++;
bitMask = 0x80;
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
for(;;) {
if(p & bitMask) {
// data ONE high
// min: 550 typ: 700 max: 5,500
gpio_set(pin);
time::delay_ns(550);
// min: 450 typ: 600 max: 5,000
gpio_clear(pin);
time::delay_ns(450);
} else {
// data ZERO high
// min: 200 typ: 350 max: 500
gpio_set(pin);
time::delay_ns(200);
// data low
// min: 450 typ: 600 max: 5,000
gpio_clear(pin);
time::delay_ns(450);
}
if(bitMask >>= 1) {
// Move on to the next pixel
asm("nop;");
} else {
if(ptr >= end) break;
p = *ptr++;
bitMask = 0x80;
}
}
#if defined(NEO_KHZ400)
} else { // 400 KHz bitstream
// ToDo!
}
#endif
#elif defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
uint8_t *p = pixels, *end = p + numBytes,
pix = *p++, mask = 0x80;
uint32_t cyc;
uint32_t saveLoad = SysTick->LOAD, saveVal = SysTick->VAL;
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
uint32_t top = (F_CPU / 800000); // 1.25µs
uint32_t t0 = top - (F_CPU / 2500000); // 0.4µs
uint32_t t1 = top - (F_CPU / 1250000); // 0.8µs
SysTick->LOAD = top - 1; // Config SysTick for NeoPixel bit freq
SysTick->VAL = 0; // Set to start value
for(;;) {
LL_GPIO_SetOutputPin(gpioPort, gpioPin);
cyc = (pix & mask) ? t1 : t0;
while(SysTick->VAL > cyc);
LL_GPIO_ResetOutputPin(gpioPort, gpioPin);
if(!(mask >>= 1)) {
if(p >= end) break;
pix = *p++;
mask = 0x80;
}
while(SysTick->VAL <= cyc);
}
#if defined(NEO_KHZ400)
} else { // 400 kHz bitstream
uint32_t top = (F_CPU / 400000); // 2.5µs
uint32_t t0 = top - (F_CPU / 2000000); // 0.5µs
uint32_t t1 = top - (F_CPU / 833333); // 1.2µs
SysTick->LOAD = top - 1; // Config SysTick for NeoPixel bit freq
SysTick->VAL = 0; // Set to start value
for(;;) {
LL_GPIO_SetOutputPin(gpioPort, gpioPin);
cyc = (pix & mask) ? t1 : t0;
while(SysTick->VAL > cyc);
LL_GPIO_ResetOutputPin(gpioPort, gpioPin);
if(!(mask >>= 1)) {
if(p >= end) break;
pix = *p++;
mask = 0x80;
}
while(SysTick->VAL <= cyc);
}
}
#endif // NEO_KHZ400
SysTick->LOAD = saveLoad; // Restore SysTick rollover to 1 ms
SysTick->VAL = saveVal; // Restore SysTick value
#elif defined (NRF51)
uint8_t *p = pixels,
pix, count, mask;
int32_t num = numBytes;
unsigned int bitmask = ( 1 << g_ADigitalPinMap[pin] );
// https://github.com/sandeepmistry/arduino-nRF5/blob/dc53980c8bac27898fca90d8ecb268e11111edc1/variants/BBCmicrobit/variant.cpp
volatile unsigned int *reg = (unsigned int *) (0x50000000UL + 0x508);
// https://github.com/sandeepmistry/arduino-nRF5/blob/dc53980c8bac27898fca90d8ecb268e11111edc1/cores/nRF5/SDK/components/device/nrf51.h
// http://www.iot-programmer.com/index.php/books/27-micro-bit-iot-in-c/chapters-micro-bit-iot-in-c/47-micro-bit-iot-in-c-fast-memory-mapped-gpio?showall=1
// https://github.com/Microsoft/pxt-neopixel/blob/master/sendbuffer.asm
asm volatile(
// "cpsid i" ; disable irq
// b .start
"b L%=_start" "\n\t"
// .nextbit: ; C0
"L%=_nextbit:" "\n\t" //; C0
// str r1, [r3, #0] ; pin := hi C2
"strb %[bitmask], [%[reg], #0]" "\n\t" //; pin := hi C2
// tst r6, r0 ; C3
"tst %[mask], %[pix]" "\n\t"// ; C3
// bne .islate ; C4
"bne L%=_islate" "\n\t" //; C4
// str r1, [r2, #0] ; pin := lo C6
"strb %[bitmask], [%[reg], #4]" "\n\t" //; pin := lo C6
// .islate:
"L%=_islate:" "\n\t"
// lsrs r6, r6, #1 ; r6 >>= 1 C7
"lsr %[mask], %[mask], #1" "\n\t" //; r6 >>= 1 C7
// bne .justbit ; C8
"bne L%=_justbit" "\n\t" //; C8
// ; not just a bit - need new byte
// adds r4, #1 ; r4++ C9
"add %[p], #1" "\n\t" //; r4++ C9
// subs r5, #1 ; r5-- C10
"sub %[num], #1" "\n\t" //; r5-- C10
// bcc .stop ; if (r5<0) goto .stop C11
"bcc L%=_stop" "\n\t" //; if (r5<0) goto .stop C11
// .start:
"L%=_start:"
// movs r6, #0x80 ; reset mask C12
"movs %[mask], #0x80" "\n\t" //; reset mask C12
// nop ; C13
"nop" "\n\t" //; C13
// .common: ; C13
"L%=_common:" "\n\t" //; C13
// str r1, [r2, #0] ; pin := lo C15
"strb %[bitmask], [%[reg], #4]" "\n\t" //; pin := lo C15
// ; always re-load byte - it just fits with the cycles better this way
// ldrb r0, [r4, #0] ; r0 := *r4 C17
"ldrb %[pix], [%[p], #0]" "\n\t" //; r0 := *r4 C17
// b .nextbit ; C20
"b L%=_nextbit" "\n\t" //; C20
// .justbit: ; C10
"L%=_justbit:" "\n\t" //; C10
// ; no nops, branch taken is already 3 cycles
// b .common ; C13
"b L%=_common" "\n\t" //; C13
// .stop:
"L%=_stop:" "\n\t"
// str r1, [r2, #0] ; pin := lo
"strb %[bitmask], [%[reg], #4]" "\n\t" //; pin := lo
// cpsie i ; enable irq
: [p] "+r" (p),
[pix] "=&r" (pix),
[count] "=&r" (count),
[mask] "=&r" (mask),
[num] "+r" (num)
: [bitmask] "r" (bitmask),
[reg] "r" (reg)
);
#elif defined(__SAM3X8E__) // Arduino Due
#define SCALE VARIANT_MCK / 2UL / 1000000UL
#define INST (2UL * F_CPU / VARIANT_MCK)
#define TIME_800_0 ((int)(0.40 * SCALE + 0.5) - (5 * INST))
#define TIME_800_1 ((int)(0.80 * SCALE + 0.5) - (5 * INST))
#define PERIOD_800 ((int)(1.25 * SCALE + 0.5) - (5 * INST))
#define TIME_400_0 ((int)(0.50 * SCALE + 0.5) - (5 * INST))
#define TIME_400_1 ((int)(1.20 * SCALE + 0.5) - (5 * INST))
#define PERIOD_400 ((int)(2.50 * SCALE + 0.5) - (5 * INST))
int pinMask, time0, time1, period, t;
Pio *port;
volatile WoReg *portSet, *portClear, *timeValue, *timeReset;
uint8_t *p, *end, pix, mask;
pmc_set_writeprotect(false);
pmc_enable_periph_clk((uint32_t)TC3_IRQn);
TC_Configure(TC1, 0,
TC_CMR_WAVE | TC_CMR_WAVSEL_UP | TC_CMR_TCCLKS_TIMER_CLOCK1);
TC_Start(TC1, 0);
pinMask = g_APinDescription[pin].ulPin; // Don't 'optimize' these into
port = g_APinDescription[pin].pPort; // declarations above. Want to
portSet = &(port->PIO_SODR); // burn a few cycles after
portClear = &(port->PIO_CODR); // starting timer to minimize
timeValue = &(TC1->TC_CHANNEL[0].TC_CV); // the initial 'while'.
timeReset = &(TC1->TC_CHANNEL[0].TC_CCR);
p = pixels;
end = p + numBytes;
pix = *p++;
mask = 0x80;
#if defined(NEO_KHZ400) // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
time0 = TIME_800_0;
time1 = TIME_800_1;
period = PERIOD_800;
#if defined(NEO_KHZ400)
} else { // 400 KHz bitstream
time0 = TIME_400_0;
time1 = TIME_400_1;
period = PERIOD_400;
}
#endif
for(t = time0;; t = time0) {
if(pix & mask) t = time1;
while(*timeValue < (unsigned)period);
*portSet = pinMask;
*timeReset = TC_CCR_CLKEN | TC_CCR_SWTRG;
while(*timeValue < (unsigned)t);
*portClear = pinMask;
if(!(mask >>= 1)) { // This 'inside-out' loop logic utilizes
if(p >= end) break; // idle time to minimize inter-byte delays.
pix = *p++;
mask = 0x80;
}
}
while(*timeValue < (unsigned)period); // Wait for last bit
TC_Stop(TC1, 0);
#endif // end Due
// END ARM ----------------------------------------------------------------
#elif defined(ESP8266) || defined(ESP32)
// ESP8266 ----------------------------------------------------------------
// ESP8266 show() is external to enforce ICACHE_RAM_ATTR execution
espShow(pin, pixels, numBytes, is800KHz);
#elif defined(KENDRYTE_K210)
k210Show(pin, pixels, numBytes, is800KHz);
#elif defined(__ARDUINO_ARC__)
// Arduino 101 -----------------------------------------------------------
#define NOPx7 { __builtin_arc_nop(); \
__builtin_arc_nop(); __builtin_arc_nop(); \
__builtin_arc_nop(); __builtin_arc_nop(); \
__builtin_arc_nop(); __builtin_arc_nop(); }
PinDescription *pindesc = &g_APinDescription[pin];
register uint32_t loop = 8 * numBytes; // one loop to handle all bytes and all bits
register uint8_t *p = pixels;
register uint32_t currByte = (uint32_t) (*p);
register uint32_t currBit = 0x80 & currByte;
register uint32_t bitCounter = 0;
register uint32_t first = 1;
// The loop is unusual. Very first iteration puts all the way LOW to the wire -
// constant LOW does not affect NEOPIXEL, so there is no visible effect displayed.
// During that very first iteration CPU caches instructions in the loop.
// Because of the caching process, "CPU slows down". NEOPIXEL pulse is very time sensitive
// that's why we let the CPU cache first and we start regular pulse from 2nd iteration
if (pindesc->ulGPIOType == SS_GPIO) {
register uint32_t reg = pindesc->ulGPIOBase + SS_GPIO_SWPORTA_DR;
uint32_t reg_val = __builtin_arc_lr((volatile uint32_t)reg);
register uint32_t reg_bit_high = reg_val | (1 << pindesc->ulGPIOId);
register uint32_t reg_bit_low = reg_val & ~(1 << pindesc->ulGPIOId);
loop += 1; // include first, special iteration
while(loop--) {
if(!first) {
currByte <<= 1;
bitCounter++;
}
// 1 is >550ns high and >450ns low; 0 is 200..500ns high and >450ns low
__builtin_arc_sr(first ? reg_bit_low : reg_bit_high, (volatile uint32_t)reg);
if(currBit) { // ~400ns HIGH (740ns overall)
NOPx7
NOPx7
}
// ~340ns HIGH
NOPx7
__builtin_arc_nop();
// 820ns LOW; per spec, max allowed low here is 5000ns */
__builtin_arc_sr(reg_bit_low, (volatile uint32_t)reg);
NOPx7
NOPx7
if(bitCounter >= 8) {
bitCounter = 0;
currByte = (uint32_t) (*++p);
}
currBit = 0x80 & currByte;
first = 0;
}
} else if(pindesc->ulGPIOType == SOC_GPIO) {
register uint32_t reg = pindesc->ulGPIOBase + SOC_GPIO_SWPORTA_DR;
uint32_t reg_val = MMIO_REG_VAL(reg);
register uint32_t reg_bit_high = reg_val | (1 << pindesc->ulGPIOId);
register uint32_t reg_bit_low = reg_val & ~(1 << pindesc->ulGPIOId);
loop += 1; // include first, special iteration
while(loop--) {
if(!first) {
currByte <<= 1;
bitCounter++;
}
MMIO_REG_VAL(reg) = first ? reg_bit_low : reg_bit_high;
if(currBit) { // ~430ns HIGH (740ns overall)
NOPx7
NOPx7
__builtin_arc_nop();
}
// ~310ns HIGH
NOPx7
// 850ns LOW; per spec, max allowed low here is 5000ns */
MMIO_REG_VAL(reg) = reg_bit_low;
NOPx7
NOPx7
if(bitCounter >= 8) {
bitCounter = 0;
currByte = (uint32_t) (*++p);
}
currBit = 0x80 & currByte;
first = 0;
}
}
#else
#error Architecture not supported
#endif
// END ARCHITECTURE SELECT ------------------------------------------------
#if !( defined(NRF52) || defined(NRF52_SERIES) )
interrupts();
#endif
endTime = micros(); // Save EOD time for latch on next call
}
/*!
@brief Set/change the NeoPixel output pin number. Previous pin,
if any, is set to INPUT and the new pin is set to OUTPUT.
@param p Arduino pin number (-1 = no pin).
*/
void Adafruit_NeoPixel::setPin(uint16_t p) {
if(begun && (pin >= 0)) pinMode(pin, INPUT);
pin = p;
if(begun) {
pinMode(p, OUTPUT);
digitalWrite(p, LOW);
}
#if defined(__AVR__)
port = portOutputRegister(digitalPinToPort(p));
pinMask = digitalPinToBitMask(p);
#endif
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
gpioPort = digitalPinToPort(p);
gpioPin = STM_LL_GPIO_PIN(digitalPinToPinName(p));
#endif
}
/*!
@brief Set a pixel's color using separate red, green and blue
components. If using RGBW pixels, white will be set to 0.
@param n Pixel index, starting from 0.
@param r Red brightness, 0 = minimum (off), 255 = maximum.
@param g Green brightness, 0 = minimum (off), 255 = maximum.
@param b Blue brightness, 0 = minimum (off), 255 = maximum.
*/
void Adafruit_NeoPixel::setPixelColor(
uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
if(n < numLEDs) {
if(brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
uint8_t *p;
if(wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = 0; // But only R,G,B passed -- set W to 0
}
p[rOffset] = r; // R,G,B always stored
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Set a pixel's color using separate red, green, blue and white
components (for RGBW NeoPixels only).
@param n Pixel index, starting from 0.
@param r Red brightness, 0 = minimum (off), 255 = maximum.
@param g Green brightness, 0 = minimum (off), 255 = maximum.
@param b Blue brightness, 0 = minimum (off), 255 = maximum.
@param w White brightness, 0 = minimum (off), 255 = maximum, ignored
if using RGB pixels.
*/
void Adafruit_NeoPixel::setPixelColor(
uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
if(n < numLEDs) {
if(brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
w = (w * brightness) >> 8;
}
uint8_t *p;
if(wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel (ignore W)
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = w; // Store W
}
p[rOffset] = r; // Store R,G,B
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Set a pixel's color using a 32-bit 'packed' RGB or RGBW value.
@param n Pixel index, starting from 0.
@param c 32-bit color value. Most significant byte is white (for RGBW
pixels) or ignored (for RGB pixels), next is red, then green,
and least significant byte is blue.
*/
void Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
if(n < numLEDs) {
uint8_t *p,
r = (uint8_t)(c >> 16),
g = (uint8_t)(c >> 8),
b = (uint8_t)c;
if(brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
if(wOffset == rOffset) {
p = &pixels[n * 3];
} else {
p = &pixels[n * 4];
uint8_t w = (uint8_t)(c >> 24);
p[wOffset] = brightness ? ((w * brightness) >> 8) : w;
}
p[rOffset] = r;
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Fill all or part of the NeoPixel strip with a color.
@param c 32-bit color value. Most significant byte is white (for
RGBW pixels) or ignored (for RGB pixels), next is red,
then green, and least significant byte is blue. If all
arguments are unspecified, this will be 0 (off).
@param first Index of first pixel to fill, starting from 0. Must be
in-bounds, no clipping is performed. 0 if unspecified.
@param count Number of pixels to fill, as a positive value. Passing
0 or leaving unspecified will fill to end of strip.
*/
void Adafruit_NeoPixel::fill(uint32_t c, uint16_t first, uint16_t count) {
uint16_t i, end;
if(first >= numLEDs) {
return; // If first LED is past end of strip, nothing to do
}
// Calculate the index ONE AFTER the last pixel to fill
if(count == 0) {
// Fill to end of strip
end = numLEDs;
} else {
// Ensure that the loop won't go past the last pixel
end = first + count;
if(end > numLEDs) end = numLEDs;
}
for(i = first; i < end; i++) {
this->setPixelColor(i, c);
}
}
/*!
@brief Convert hue, saturation and value into a packed 32-bit RGB color
that can be passed to setPixelColor() or other RGB-compatible
functions.
@param hue An unsigned 16-bit value, 0 to 65535, representing one full
loop of the color wheel, which allows 16-bit hues to "roll
over" while still doing the expected thing (and allowing
more precision than the wheel() function that was common to
prior NeoPixel examples).
@param sat Saturation, 8-bit value, 0 (min or pure grayscale) to 255
(max or pure hue). Default of 255 if unspecified.
@param val Value (brightness), 8-bit value, 0 (min / black / off) to
255 (max or full brightness). Default of 255 if unspecified.
@return Packed 32-bit RGB with the most significant byte set to 0 -- the
white element of WRGB pixels is NOT utilized. Result is linearly
but not perceptually correct, so you may want to pass the result
through the gamma32() function (or your own gamma-correction
operation) else colors may appear washed out. This is not done
automatically by this function because coders may desire a more
refined gamma-correction function than the simplified
one-size-fits-all operation of gamma32(). Diffusing the LEDs also
really seems to help when using low-saturation colors.
*/
uint32_t Adafruit_NeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
uint8_t r, g, b;
// Remap 0-65535 to 0-1529. Pure red is CENTERED on the 64K rollover;
// 0 is not the start of pure red, but the midpoint...a few values above
// zero and a few below 65536 all yield pure red (similarly, 32768 is the
// midpoint, not start, of pure cyan). The 8-bit RGB hexcone (256 values
// each for red, green, blue) really only allows for 1530 distinct hues
// (not 1536, more on that below), but the full unsigned 16-bit type was
// chosen for hue so that one's code can easily handle a contiguous color
// wheel by allowing hue to roll over in either direction.
hue = (hue * 1530L + 32768) / 65536;
// Because red is centered on the rollover point (the +32768 above,
// essentially a fixed-point +0.5), the above actually yields 0 to 1530,
// where 0 and 1530 would yield the same thing. Rather than apply a
// costly modulo operator, 1530 is handled as a special case below.
// So you'd think that the color "hexcone" (the thing that ramps from
// pure red, to pure yellow, to pure green and so forth back to red,
// yielding six slices), and with each color component having 256
// possible values (0-255), might have 1536 possible items (6*256),
// but in reality there's 1530. This is because the last element in
// each 256-element slice is equal to the first element of the next
// slice, and keeping those in there this would create small
// discontinuities in the color wheel. So the last element of each
// slice is dropped...we regard only elements 0-254, with item 255
// being picked up as element 0 of the next slice. Like this:
// Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0
// Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0
// Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254
// and so forth. Hence, 1530 distinct hues (0 to 1529), and hence why
// the constants below are not the multiples of 256 you might expect.
// Convert hue to R,G,B (nested ifs faster than divide+mod+switch):
if(hue < 510) { // Red to Green-1
b = 0;
if(hue < 255) { // Red to Yellow-1
r = 255;
g = hue; // g = 0 to 254
} else { // Yellow to Green-1
r = 510 - hue; // r = 255 to 1
g = 255;
}
} else if(hue < 1020) { // Green to Blue-1
r = 0;
if(hue < 765) { // Green to Cyan-1
g = 255;
b = hue - 510; // b = 0 to 254
} else { // Cyan to Blue-1
g = 1020 - hue; // g = 255 to 1
b = 255;
}
} else if(hue < 1530) { // Blue to Red-1
g = 0;
if(hue < 1275) { // Blue to Magenta-1
r = hue - 1020; // r = 0 to 254
b = 255;
} else { // Magenta to Red-1
r = 255;
b = 1530 - hue; // b = 255 to 1
}
} else { // Last 0.5 Red (quicker than % operator)
r = 255;
g = b = 0;
}
// Apply saturation and value to R,G,B, pack into 32-bit result:
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
uint16_t s1 = 1 + sat; // 1 to 256; same reason
uint8_t s2 = 255 - sat; // 255 to 0
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
( ((((b * s1) >> 8) + s2) * v1) >> 8);
}
/*!
@brief Query the color of a previously-set pixel.
@param n Index of pixel to read (0 = first).
@return 'Packed' 32-bit RGB or WRGB value. Most significant byte is white
(for RGBW pixels) or 0 (for RGB pixels), next is red, then green,
and least significant byte is blue.
@note If the strip brightness has been changed from the default value
of 255, the color read from a pixel may not exactly match what
was previously written with one of the setPixelColor() functions.
This gets more pronounced at lower brightness levels.
*/
uint32_t Adafruit_NeoPixel::getPixelColor(uint16_t n) const {
if(n >= numLEDs) return 0; // Out of bounds, return no color.
uint8_t *p;
if(wOffset == rOffset) { // Is RGB-type device
p = &pixels[n * 3];
if(brightness) {
// Stored color was decimated by setBrightness(). Returned value
// attempts to scale back to an approximation of the original 24-bit
// value used when setting the pixel color, but there will always be
// some error -- those bits are simply gone. Issue is most
// pronounced at low brightness levels.
return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
( (uint32_t)(p[bOffset] << 8) / brightness );
} else {
// No brightness adjustment has been made -- return 'raw' color
return ((uint32_t)p[rOffset] << 16) |
((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
} else { // Is RGBW-type device
p = &pixels[n * 4];
if(brightness) { // Return scaled color
return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) |
(((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
( (uint32_t)(p[bOffset] << 8) / brightness );
} else { // Return raw color
return ((uint32_t)p[wOffset] << 24) |
((uint32_t)p[rOffset] << 16) |
((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
}
}
/*!
@brief Adjust output brightness. Does not immediately affect what's
currently displayed on the LEDs. The next call to show() will
refresh the LEDs at this level.
@param b Brightness setting, 0=minimum (off), 255=brightest.
@note This was intended for one-time use in one's setup() function,
not as an animation effect in itself. Because of the way this
library "pre-multiplies" LED colors in RAM, changing the
brightness is often a "lossy" operation -- what you write to
pixels isn't necessary the same as what you'll read back.
Repeated brightness changes using this function exacerbate the
problem. Smart programs therefore treat the strip as a
write-only resource, maintaining their own state to render each
frame of an animation, not relying on read-modify-write.
*/
void Adafruit_NeoPixel::setBrightness(uint8_t b) {
// Stored brightness value is different than what's passed.
// This simplifies the actual scaling math later, allowing a fast
// 8x8-bit multiply and taking the MSB. 'brightness' is a uint8_t,
// adding 1 here may (intentionally) roll over...so 0 = max brightness
// (color values are interpreted literally; no scaling), 1 = min
// brightness (off), 255 = just below max brightness.
uint8_t newBrightness = b + 1;
if(newBrightness != brightness) { // Compare against prior value
// Brightness has changed -- re-scale existing data in RAM,
// This process is potentially "lossy," especially when increasing
// brightness. The tight timing in the WS2811/WS2812 code means there
// aren't enough free cycles to perform this scaling on the fly as data
// is issued. So we make a pass through the existing color data in RAM
// and scale it (subsequent graphics commands also work at this
// brightness level). If there's a significant step up in brightness,
// the limited number of steps (quantization) in the old data will be
// quite visible in the re-scaled version. For a non-destructive
// change, you'll need to re-render the full strip data. C'est la vie.
uint8_t c,
*ptr = pixels,
oldBrightness = brightness - 1; // De-wrap old brightness value
uint16_t scale;
if(oldBrightness == 0) scale = 0; // Avoid /0
else if(b == 255) scale = 65535 / oldBrightness;
else scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
for(uint16_t i=0; i<numBytes; i++) {
c = *ptr;
*ptr++ = (c * scale) >> 8;
}
brightness = newBrightness;
}
}
/*!
@brief Retrieve the last-set brightness value for the strip.
@return Brightness value: 0 = minimum (off), 255 = maximum.
*/
uint8_t Adafruit_NeoPixel::getBrightness(void) const {
return brightness - 1;
}
/*!
@brief Fill the whole NeoPixel strip with 0 / black / off.
*/
void Adafruit_NeoPixel::clear(void) {
memset(pixels, 0, numBytes);
}
// A 32-bit variant of gamma8() that applies the same function
// to all components of a packed RGB or WRGB value.
uint32_t Adafruit_NeoPixel::gamma32(uint32_t x) {
uint8_t *y = (uint8_t *)&x;
// All four bytes of a 32-bit value are filtered even if RGB (not WRGB),
// to avoid a bunch of shifting and masking that would be necessary for
// properly handling different endianisms (and each byte is a fairly
// trivial operation, so it might not even be wasting cycles vs a check
// and branch for the RGB case). In theory this might cause trouble *if*
// someone's storing information in the unused most significant byte
// of an RGB value, but this seems exceedingly rare and if it's
// encountered in reality they can mask values going in or coming out.
for(uint8_t i=0; i<4; i++) y[i] = gamma8(y[i]);
return x; // Packed 32-bit return
}
/*!
* @file Adafruit_NeoPixel.h
*
* This is part of Adafruit's NeoPixel library for the Arduino platform,
* allowing a broad range of microcontroller boards (most AVR boards,
* many ARM devices, ESP8266 and ESP32, among others) to control Adafruit
* NeoPixels, FLORA RGB Smart Pixels and compatible devices -- WS2811,
* WS2812, WS2812B, SK6812, etc.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* Written by Phil "Paint Your Dragon" Burgess for Adafruit Industries,
* with contributions by PJRC, Michael Miller and other members of the
* open source community.
*
* This file is part of the Adafruit_NeoPixel library.
*
* Adafruit_NeoPixel is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_NeoPixel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with NeoPixel. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#ifndef ADAFRUIT_NEOPIXEL_H
#define ADAFRUIT_NEOPIXEL_H
#ifdef ARDUINO
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#include <pins_arduino.h>
#endif
#endif
#ifdef TARGET_LPC1768
#include <Arduino.h>
#endif
// The order of primary colors in the NeoPixel data stream can vary among
// device types, manufacturers and even different revisions of the same
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
// the per-pixel byte offsets of the red, green and blue primaries (plus
// white, if present) in the data stream -- the following #defines provide
// an easier-to-use named version for each permutation. e.g. NEO_GRB
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
// with the first byte transmitted containing the green value, second
// containing red and third containing blue. The in-memory representation
// of a chain of NeoPixels is the same as the data-stream order; no
// re-ordering of bytes is required when issuing data to the chain.
// Most of these values won't exist in real-world devices, but it's done
// this way so we're ready for it (also, if using the WS2811 driver IC,
// one might have their pixels set up in any weird permutation).
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
// pixel to the location of the red color byte. Bits 3,2 are the green
// offset and 1,0 are the blue offset. If it is an RGBW-type device
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
// offset to the white byte...otherwise, bits 7,6 are set to the same value
// as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0<<6) | (0<<4) | (1<<2) | (2)) ///< Transmit as R,G,B
#define NEO_RBG ((0<<6) | (0<<4) | (2<<2) | (1)) ///< Transmit as R,B,G
#define NEO_GRB ((1<<6) | (1<<4) | (0<<2) | (2)) ///< Transmit as G,R,B
#define NEO_GBR ((2<<6) | (2<<4) | (0<<2) | (1)) ///< Transmit as G,B,R
#define NEO_BRG ((1<<6) | (1<<4) | (2<<2) | (0)) ///< Transmit as B,R,G
#define NEO_BGR ((2<<6) | (2<<4) | (1<<2) | (0)) ///< Transmit as B,G,R
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0<<6) | (1<<4) | (2<<2) | (3)) ///< Transmit as W,R,G,B
#define NEO_WRBG ((0<<6) | (1<<4) | (3<<2) | (2)) ///< Transmit as W,R,B,G
#define NEO_WGRB ((0<<6) | (2<<4) | (1<<2) | (3)) ///< Transmit as W,G,R,B
#define NEO_WGBR ((0<<6) | (3<<4) | (1<<2) | (2)) ///< Transmit as W,G,B,R
#define NEO_WBRG ((0<<6) | (2<<4) | (3<<2) | (1)) ///< Transmit as W,B,R,G
#define NEO_WBGR ((0<<6) | (3<<4) | (2<<2) | (1)) ///< Transmit as W,B,G,R
#define NEO_RWGB ((1<<6) | (0<<4) | (2<<2) | (3)) ///< Transmit as R,W,G,B
#define NEO_RWBG ((1<<6) | (0<<4) | (3<<2) | (2)) ///< Transmit as R,W,B,G
#define NEO_RGWB ((2<<6) | (0<<4) | (1<<2) | (3)) ///< Transmit as R,G,W,B
#define NEO_RGBW ((3<<6) | (0<<4) | (1<<2) | (2)) ///< Transmit as R,G,B,W
#define NEO_RBWG ((2<<6) | (0<<4) | (3<<2) | (1)) ///< Transmit as R,B,W,G
#define NEO_RBGW ((3<<6) | (0<<4) | (2<<2) | (1)) ///< Transmit as R,B,G,W
#define NEO_GWRB ((1<<6) | (2<<4) | (0<<2) | (3)) ///< Transmit as G,W,R,B
#define NEO_GWBR ((1<<6) | (3<<4) | (0<<2) | (2)) ///< Transmit as G,W,B,R
#define NEO_GRWB ((2<<6) | (1<<4) | (0<<2) | (3)) ///< Transmit as G,R,W,B
#define NEO_GRBW ((3<<6) | (1<<4) | (0<<2) | (2)) ///< Transmit as G,R,B,W
#define NEO_GBWR ((2<<6) | (3<<4) | (0<<2) | (1)) ///< Transmit as G,B,W,R
#define NEO_GBRW ((3<<6) | (2<<4) | (0<<2) | (1)) ///< Transmit as G,B,R,W
#define NEO_BWRG ((1<<6) | (2<<4) | (3<<2) | (0)) ///< Transmit as B,W,R,G
#define NEO_BWGR ((1<<6) | (3<<4) | (2<<2) | (0)) ///< Transmit as B,W,G,R
#define NEO_BRWG ((2<<6) | (1<<4) | (3<<2) | (0)) ///< Transmit as B,R,W,G
#define NEO_BRGW ((3<<6) | (1<<4) | (2<<2) | (0)) ///< Transmit as B,R,G,W
#define NEO_BGWR ((2<<6) | (3<<4) | (1<<2) | (0)) ///< Transmit as B,G,W,R
#define NEO_BGRW ((3<<6) | (2<<4) | (1<<2) | (0)) ///< Transmit as B,G,R,W
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
// the default if unspecified. Because flash space is very limited on ATtiny
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
// those chips, though it can be enabled by removing the ifndef/endif below,
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
// other MCUs to remove v1 support and save a little space.
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
#ifndef __AVR_ATtiny85__
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
#endif
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
#ifdef NEO_KHZ400
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#else
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#endif
// These two tables are declared outside the Adafruit_NeoPixel class
// because some boards may require oldschool compilers that don't
// handle the C++11 constexpr keyword.
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
Copy & paste this snippet into a Python REPL to regenerate:
import math
for x in range(256):
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
128,131,134,137,140,143,146,149,152,155,158,162,165,167,170,173,
176,179,182,185,188,190,193,196,198,201,203,206,208,211,213,215,
218,220,222,224,226,228,230,232,234,235,237,238,240,241,243,244,
245,246,248,249,250,250,251,252,253,253,254,254,254,255,255,255,
255,255,255,255,254,254,254,253,253,252,251,250,250,249,248,246,
245,244,243,241,240,238,237,235,234,232,230,228,226,224,222,220,
218,215,213,211,208,206,203,201,198,196,193,190,188,185,182,179,
176,173,170,167,165,162,158,155,152,149,146,143,140,137,134,131,
128,124,121,118,115,112,109,106,103,100, 97, 93, 90, 88, 85, 82,
79, 76, 73, 70, 67, 65, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40,
37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11,
10, 9, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9,
10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35,
37, 40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
79, 82, 85, 88, 90, 93, 97,100,103,106,109,112,115,118,121,124};
/* Similar to above, but for an 8-bit gamma-correction table.
Copy & paste this snippet into a Python REPL to regenerate:
import math
gamma=2.6
for x in range(256):
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7,
7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12,
13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20,
20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29,
30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75,
76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96,
97, 99,100,102,103,105,106,108,109,111,112,114,115,117,119,120,
122,124,125,127,129,130,132,134,136,137,139,141,143,145,146,148,
150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,
182,184,186,188,191,193,195,197,199,202,204,206,209,211,213,215,
218,220,223,225,227,230,232,235,237,240,242,245,247,250,252,255};
/*!
@brief Class that stores state and functions for interacting with
Adafruit NeoPixels and compatible devices.
*/
class Adafruit_NeoPixel {
public:
// Constructor: number of LEDs, pin number, LED type
Adafruit_NeoPixel(uint16_t n, uint16_t pin=6,
neoPixelType type=NEO_GRB + NEO_KHZ800);
Adafruit_NeoPixel(void);
~Adafruit_NeoPixel();
void begin(void);
void show(void);
void setPin(uint16_t p);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b,
uint8_t w);
void setPixelColor(uint16_t n, uint32_t c);
void fill(uint32_t c=0, uint16_t first=0, uint16_t count=0);
void setBrightness(uint8_t);
void clear(void);
void updateLength(uint16_t n);
void updateType(neoPixelType t);
/*!
@brief Check whether a call to show() will start sending data
immediately or will 'block' for a required interval. NeoPixels
require a short quiet time (about 300 microseconds) after the
last bit is received before the data 'latches' and new data can
start being received. Usually one's sketch is implicitly using
this time to generate a new frame of animation...but if it
finishes very quickly, this function could be used to see if
there's some idle time available for some low-priority
concurrent task.
@return 1 or true if show() will start sending immediately, 0 or false
if show() would block (meaning some idle time is available).
*/
bool canShow(void) {
if (endTime > micros()) {
endTime = micros();
}
return (micros() - endTime) >= 300L;
}
/*!
@brief Get a pointer directly to the NeoPixel data buffer in RAM.
Pixel data is stored in a device-native format (a la the NEO_*
constants) and is not translated here. Applications that access
this buffer will need to be aware of the specific data format
and handle colors appropriately.
@return Pointer to NeoPixel buffer (uint8_t* array).
@note This is for high-performance applications where calling
setPixelColor() on every single pixel would be too slow (e.g.
POV or light-painting projects). There is no bounds checking
on the array, creating tremendous potential for mayhem if one
writes past the ends of the buffer. Great power, great
responsibility and all that.
*/
uint8_t *getPixels(void) const { return pixels; };
uint8_t getBrightness(void) const;
/*!
@brief Retrieve the pin number used for NeoPixel data output.
@return Arduino pin number (-1 if not set).
*/
int16_t getPin(void) const { return pin; };
/*!
@brief Return the number of pixels in an Adafruit_NeoPixel strip object.
@return Pixel count (0 if not set).
*/
uint16_t numPixels(void) const { return numLEDs; }
uint32_t getPixelColor(uint16_t n) const;
/*!
@brief An 8-bit integer sine wave function, not directly compatible
with standard trigonometric units like radians or degrees.
@param x Input angle, 0-255; 256 would loop back to zero, completing
the circle (equivalent to 360 degrees or 2 pi radians).
One can therefore use an unsigned 8-bit variable and simply
add or subtract, allowing it to overflow/underflow and it
still does the expected contiguous thing.
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
a signed int8_t, but you'll most likely want unsigned as this
output is often used for pixel brightness in animation effects.
*/
static uint8_t sine8(uint8_t x) {
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
}
/*!
@brief An 8-bit gamma-correction function for basic pixel brightness
adjustment. Makes color transitions appear more perceptially
correct.
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
@return Gamma-adjusted brightness, can then be passed to one of the
setPixelColor() functions. This uses a fixed gamma correction
exponent of 2.6, which seems reasonably okay for average
NeoPixels in average tasks. If you need finer control you'll
need to provide your own gamma-correction function instead.
*/
static uint8_t gamma8(uint8_t x) {
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
}
/*!
@brief Convert separate red, green and blue values into a single
"packed" 32-bit RGB color.
@param r Red brightness, 0 to 255.
@param g Green brightness, 0 to 255.
@param b Blue brightness, 0 to 255.
@return 32-bit packed RGB value, which can then be assigned to a
variable for later use or passed to the setPixelColor()
function. Packed RGB format is predictable, regardless of
LED strand color order.
*/
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
/*!
@brief Convert separate red, green, blue and white values into a
single "packed" 32-bit WRGB color.
@param r Red brightness, 0 to 255.
@param g Green brightness, 0 to 255.
@param b Blue brightness, 0 to 255.
@param w White brightness, 0 to 255.
@return 32-bit packed WRGB value, which can then be assigned to a
variable for later use or passed to the setPixelColor()
function. Packed WRGB format is predictable, regardless of
LED strand color order.
*/
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
static uint32_t ColorHSV(uint16_t hue, uint8_t sat=255, uint8_t val=255);
/*!
@brief A gamma-correction function for 32-bit packed RGB or WRGB
colors. Makes color transitions appear more perceptially
correct.
@param x 32-bit packed RGB or WRGB color.
@return Gamma-adjusted packed color, can then be passed in one of the
setPixelColor() functions. Like gamma8(), this uses a fixed
gamma correction exponent of 2.6, which seems reasonably okay
for average NeoPixels in average tasks. If you need finer
control you'll need to provide your own gamma-correction
function instead.
*/
static uint32_t gamma32(uint32_t x);
protected:
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
bool is800KHz; ///< true if 800 KHz pixels
#endif
bool begun; ///< true if begin() previously called
uint16_t numLEDs; ///< Number of RGB LEDs in strip
uint16_t numBytes; ///< Size of 'pixels' buffer below
int16_t pin; ///< Output pin number (-1 if not yet set)
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
uint8_t gOffset; ///< Index of green byte
uint8_t bOffset; ///< Index of blue byte
uint8_t wOffset; ///< Index of white (==rOffset if no white)
uint32_t endTime; ///< Latch timing reference
#ifdef __AVR__
volatile uint8_t *port; ///< Output PORT register
uint8_t pinMask; ///< Output PORT bitmask
#endif
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
uint32_t gpioPin; ///< Output GPIO PIN
#endif
};
#endif // ADAFRUIT_NEOPIXEL_H
# Contribution Guidelines
This library is the culmination of the expertise of many members of the open source community who have dedicated their time and hard work. The best way to ask for help or propose a new idea is to [create a new issue](https://github.com/adafruit/Adafruit_NeoPixel/issues/new) while creating a Pull Request with your code changes allows you to share your own innovations with the rest of the community.
The following are some guidelines to observe when creating issues or PRs:
- Be friendly; it is important that we can all enjoy a safe space as we are all working on the same project and it is okay for people to have different ideas
- [Use code blocks](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#code); it helps us help you when we can read your code! On that note also refrain from pasting more than 30 lines of code in a post, instead [create a gist](https://gist.github.com/) if you need to share large snippets
- Use reasonable titles; refrain from using overly long or capitalized titles as they are usually annoying and do little to encourage others to help :smile:
- Be detailed; refrain from mentioning code problems without sharing your source code and always give information regarding your board and version of the library
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment