In der Hochschullehre liefern häufige kleine Tests den Studierenden und Lehrenden wichtige Rückmeldung zum Lernstand, bedeuten aber auch zusätzlichen Zeitaufwand für die Korrektur. Daher gibt es schon länger Ansätze zur automatischen oder automatisch gestützten Bewertung von kurzen Freitext-Antworten. Wir prüfen, ob die im Natural Language Processing (NLP) hoch erfolgreichen transformerbasierten neuronalen Modelle auch eine Qualitätsverbesserung bei der automatisierten Bewertung von Freitexten liefern können.Der Trainingsaufwand für das Anpassen der existierenden Modelle an die konkrete Aufgabe übersteigt bei weitem das auf einem üblichen PC realistisch leistbare. Daher nutzen wir die Ressourcen von bwHPC.